2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

CodeAware: Sensor-Based Fine-Grained Monitoring
and Management of Software Artifacts

Rui Abreu
Palo Alto Research Center
Palo Alto, CA 94304
Email: rui@computer.org

Abstract—Current continuous integration (CI) tools, although
extensible, can be limiting in terms of flexibility. In particular,
artifact analysis capabilities available through plugin mechanisms
are both coarse-grained and centralized. To address this limi-
tation, this paper introduces a new paradigm, CodeAware, for
distributed and fine-grained artifact analysis. CodeAware is an
ecosystem inspired by sensor networks, consisting of monitors
and actuators, aimed at improving code quality and team produc-
tivity. CodeAware’s vision entails (a) the ability to probe software
artifacts of any granularity and localization, from variables to
classes or files to entire systems; (b) the ability to perform both
static and dynamic analyses on these artifacts; and (c) the ability
to describe targeted remediation actions, for example to notify
interested developers, through automated actuators. We provide
motivational examples for the use of CodeAware that leverage
current CI solutions, sketch the architecture of its underlying
ecosystem, and outline research challenges.

I. INTRODUCTION

The roots of continuous integration (CI) can be traced back
to the Extreme Programming (XP) methodology [4]. Among
the objectives of Cl is to alleviate the problems of “integration
hell”, the street term that refers to different engineers simul-
taneously working on the same codebase having to eventually
merge their conflicting changes to make the application work.
A common way to deal with such problems is to use source
code management (SCM) tools (e.g., SVN, Git, or Mercurial)
and to frequently commit changes. At each new code commit,
a remote server (also known as build server or CI server)
pulls the code from the version control system and builds the
application automatically to determine if there are any merge
conflicts. Furthermore, at each new build, specified regression
test suites can be run to see if any new features or bug
fixes break existing functionality. Various forms of static (e.g.,
FindBugs [2]) and dynamic analyses (e.g., code coverage [1])
can also be included in the build pipeline through third-party
plugins. The development team can be automatically notified
of successful builds or failures in the build pipeline. Fine-
tuning is possible to filter the results or to confine analyses to
a portion of the codebase. However this is achieved through
centralized configuration of the build server and its plugins.

CI is widely adopted in industry, and several different
systems are available to practitioners. The most popular ones

978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.192

Hakan Erdogmus
Carnegie Mellon University - Silicon Valley
Moffett Field, CA 94035
Email: hakan.erdogmus @sv.cmu.edu

551

Alexandre Perez
Palo Alto Research Center
Palo Alto, CA 94304
Email: alexandre@computer.org

include the open source projects Jenkins,! CruiseControl,

Apache Continuum,?> Oracle’s Hudson,* and Bamboo from
Atlassian’ The functionalities of these CI systems can typ-
ically be extended with plugins. For example, at the time
of writing this paper, Jenkins had more than 600 plugins,
including plugins to perform static and dynamic analyses, such
as style checking and measuring test-case coverage.

Localized approaches rely on plugins attached to instances
of integrated development environments (IDEs) running on the
engineers’ local hardware. The plugins, or loggers, collect
data from an engineer working on a software project and
either directly visualize the information in the engineer’s
environment or send the collected data to a central repository
for further, offline analysis. Engineers’ code navigation history,
test runs, files changed, and file metrics can be recorded [9],
[8]. Project-level metrics can also be tracked by aggregating
data from multiple engineers. Hackystat [6] and AnalyzeD [7]
are examples of such systems. Whether the data are stored and
processed locally or centrally, relevant information about what
others engineers are doing and how their actions may impact
a specific engineer is still missing.

Therefore, while these systems and the plugins available
for them are very useful, the underlying approaches employed
to monitor and manage code artifacts are monolithic and
too coarse-grained to be scalable (see Figure 1). In addition
engineers cannot register interest only in code artifacts that
affect them. When the codebase is large, this centralized,
untargeted approach may become too inflexible and lose its
usefulness. We wish to flip this approach on its head using
a sensor network metaphor, allowing quality monitoring and
management of software artifacts to be distributed, granular,
and individually definable, controllable, and actionable.

Thus CodeAware (see Figure 2) is a new research vision
based on a flexible, scalable, and extensible ecosystem of soft
agents that support software engineers in their endeavor to
improve code quality and team productivity. The ecosystem is
composed of probes, coordinators, actors, and dashboards (and
variants thereof) that may be attached to and deployed with

'http://jenkins-ci.org, accessed Jan, 2015.
Zhttp://cruisecontrol.sourceforge.net, accessed Jan, 2015.
3http://continuum.apache.org, accessed Jan, 2015.
“http://hudson-ci.org, accessed Jan, 2015.
Shttp://atlassian.com/software/bamboo, accessed Jan, 2015.

ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Build Server commit

commit

™~

commit

Fig. 1. The classical approach: monolithic, centralized, inflexible

individual code fragments such as statements, blocks, methods,
tests, files, and directories, as well as logical artifacts such as
variables, classes, data types, packages, and aspects.

Build Server

commit commit

‘

[e /
N
=B Rt
Results Results (

Signal %

}“-\Frobe’

commit

Actor

Fig. 2. The CodeAware approach: fine-grained, distributed, flexible/targeted

These soft sensors, controllers, actuators, and dashboards
are user definable and may have different purposes. Some may
be detectors that perform static analyses to identify common
risky coding patterns or collect complexity metrics about the
artifacts to which they are attached. Others may monitor
changes (e.g., about execution or commit time of a given
method). Meta-probes may aggregate input from multiple
probes to reveal higher level information. Coordinators may
subscribe to input from a variety of probes to devise actionable
strategies when corrective measures are warranted. Certain
coordinators may be responsible for the meta-monitoring
of the ecosystem so that the constituents live in harmony
and without conflict and can be searched, enabled, disabled,
spread, constrained, deleted, and maintained easily. These
strategies are deployed through actors that may perform a
myriad of missions such as automatically fire alerts, generate
reports, allocate or free resources, update plans, make changes
to underlying software artifacts, log issues in issue tracking
systems, or flag software artifacts for review. Dashboards
allow subscribers to visualize the collected information in a
digestible form and give them access to actors. Instead of
installing a logger on a local machine and define filters to
restrict the information collection, engineers define and deploy
these agents incrementally for selected software artifacts.

The ecosystem grows organically with the code base and

552

according to evolving needs as new types of probes and actors
are defined. The resulting approach is consequently more
evolutionary and robust than traditional big-bang approaches
to software quality management.

Our hypothesis is that the CodeAware ecosystem will
improve both productivity and software quality by bringing
relevant changes, not only external ones caused by updates
in dependencies [5] but also internal changes within the
codebase, to the attention of the software engineer before
the fact in a manageable and targeted way, thus emphasizing
efficient and proactive prevention over fault localization and
fixing. Our goal is to foster discussion around the metaphor
underlying CodeAware and encourage future endeavors that
take advantage of it.

II. EXAMPLE SCENARIO

In this section we present an example scenario to motivate
using CodeAware over current CI strategies. The scenario
is explained through a narrative that captures CodeAware’s
vision. We take a declarative and linguistic approach to the
narrative, but it is easy to imagine scenarios that can be
executed through modern UI mechanisms, such as selecting,
dragging, dropping, input widgets, and workflow wizards.

Let us assume that Sue, a game developer, is responsible
for ensuring the game her team is developing runs at a certain
speed. She knows that, in order to provide an enjoyable
experience to players, the game needs to be able to display
animation at around 60 frames per second. Fulfilling this
requirement implies that the render method that draws each
frame to the display should take no more than 16 milliseconds.

Sue decides to write a simple CodeAware probe attached to
an actor that notifies her every time a performance decrease
is detected in the render method. She starts by selecting the
artifact she wants to monitor:

artifact 'render_func' (function: GameEngine::render)

In this example, the artifact is a method (or function), which
is rather fine grained. One could, for instance, define a coarser
artifact, such as a class, using the class keyword:

artifact 'game_engine_class' (class: GameEngine)

After declaring the artifact, Sue creates a probe that will profile
the artifact (a type of dynamic analysis) every time a new
version of the method is committed to the shared repository.
The profiler will instrument the code and run the project’s
test suite multiple times. The probe’s signal will equal the
maximum execution time of the artifact.

performance_probe
on: scm_commit,
run: test_suite,
signal: filter (max))

'render_probe' (

The probe may now be attached to the artifact:

'render_probe' -> 'render_func'

Sue wants to be notified via email, so she declares an email
notifier, a specialized actor:

email_notifier 'my_notifier' (address: 'sue@xyz.com')

ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Now, Sue needs to define a coordinator that listens to the
probe’s signal. If the signal strength is above the set threshold
of 16 milliseconds, the coordinator actuates the email notifier
to send an email to Sue:

('render_probe' > léms) -> 'my_notifier' (

subject: 'render frame rate below 60FPS!"')

She is finished. On Sue’s next commit, these actors will be
deployed to the codebase along with any other changes. Then,
CodeAware will able to immediately bring to her attention
whenever a particular commit by anyone else on the team
causes her game to run too slowly.

Note that this type of capability is not natively and readily
supported in CI tools such as Jenkins or plugins available for
them. However, it can be incorporated into CI tools through
a specialized engine that is inserted into the build pipeline.
The next section describes how this can be architecturally
accomplished and the associated implementation challenges.

III. REALIZING CODEAWARE
A. Concepts and Elements

CodeAware defines a rich landscape of elements that em-
ulate a physical sensor-actuator metaphor and extend that
metaphor with a logical overlay. These elements are:

a) Ecosystem: a distributed system of managed artifacts
and agents. Agents can be probes, meta-probes, coordinators,
actors, or dashboards.

b) Artifact: a host (monitored) subsystem that is a piece
of software (local or crosscutting), such as a variable, state-
ment, arbitrary code snippet, block, method, class, statement,
file, package, subsystem, interface, API, data type, aspect,
system, service, or application;

c) Static Probe: a passive agent attached to an artifact
that can detect changes to an artifact and can perform different
types of static analyses;

d) Dynamic Probe: a passive agent injected into an
executable artifact that monitors its run-time behavior and can
perform different types of dynamic analysis on that artifact;

e) Meta-Probe: a probe that aggregates input from mul-
tiple probes, possibly associated with multiple artifacts through
defined aggregation operations;

f) Coordinator: an active agent that listens on probes,
collects data from probes and manages actors.

g) Actor: an agent that takes action on behalf of a
coordinator in response to a combination of probe inputs; for
example, an actor may send alerts, update a piece of software,
log an issue report, make a recommendation, or roll back a
repository action.

h) Filter: a construct that transforms or filters the signal
of a probe.

i) Dashboard: a passive agent with a Ul for monitoring
probe input and actor behavior for its subscribers.

J) Subscriber: A user or another external system that
registers an interest in receiving information from certain
actors or dashboards.

k) Notifier: An actor that notifies interested subscribers
of an event that is of interest to them.

553

1) Recommender: an actor that makes a recommendation
to interested subscribers (e.g., if a subscriber register interest
for input from a specific actor, then a recommender may
suggest that the subscriber also follow other related actors).

m) Updater: an actor that modifies an artifact.

n) Reporter: an actor that reports an event to a target
external system, e.g., logs an issue in an issue tracking system,
generates a requirement to add to a requirements management
system, or generates a static analysis report for the engineers
to view.

To support the above, we envisage an overlay domain-
specific language (DSL) with generalized constructs and a
hierarchy of increasingly specialized and expressive DSLs. At
the second level, the hierarchy consists of DSLs to describe
first-order elements (probes, meta-probes, actors, coordinators,
and dashboards). Then at the next level these DSLs are further
supported by sub-DSLs that express second-order elements
with predefined, but extensible, prototype libraries (dynamic
and static probes of different kinds, notifiers, recommenders,
updaters, and reporters).

B. Architecture

A two-prong architecture for CodeAware is illustrated in
Figure 3. On the client side, engineers define CodeAware
constructs and elements locally and then deploy them first
to their local version of the codebase. This is the Client-
Side Engine, which may live inside an IDE as a plugin. The
CodeAware client environment consists of an interpreter (or
interpreters for multiple DSLs) and prototype libraries. The
interpreter allows the engineer to define new prototypes or
reuse existing prototypes by cloning them from the libraries,
define artifacts (hosts), attach probes to hosts, deploy actors
and coordinators to the local codebase, and connect these
locally deployed agents with each other in the codebase.

Once the changes are committed the shared repository, the
Server-Side Engine takes over. The Server-Side Engine sits
in the build pipeline on the CI server. The Dispatcher first
separates probes, actors, and coordinators. The probes are
optimized by Optimizer so that their signals are generated in
an efficient manner (e.g., common analyses of multiple probes
attached to the same host are executed only once) by the Signal
Generator. The Signal Generator verifies that the triggers of
the probes (e.g., a change in the host artifact) are satisfied and
the corresponding analyses are performed (often by running
external plugins, e.g. static analyzers or profilers). The output
of these analyses are consolidated in a signal table. The
Dispatcher feeds the coordinators to an Orchestrator, which
serializes them to resolve any dependencies. The Dispatcher
also forwards the actors to a Processor, which executes the
serialized coordinators using inputs from the signal table,
actuating the proper actors as specified by the coordinators.
The desired effects are thus achieved, with designated en-
gineers receiving notifications, issue trackers and dashboards
(not shown) being updated, and reports being generated and
sent to subscribers who have registered an interest in them.

ICSE 2015, Florence, Italy
New Ideas and Emerging Results

Client Side Engine Server Side Engine

Codebase
.| 2 Optimizer ~4| Signal
w © Generator
Host Program §
Release
(attach, deploy) Signals
CodeAware " (Signal

Environment Orchestrator

Table)
Prototype Library

Serialize
coordinators

Processor
(coordination,
actuation)

Fig. 3. CodeAware Architecture

Interpreter

Actors

C. Challenges

Building a system such as CodeAware poses a number
of research challenges. We have identified the following as
the main challenges that need to be addressed: (i) ensuring
smooth evolution and continuous integrity; (ii) ensuring perfor-
mance; (iii) controlling impact on sensed artifacts (footprint,
performance, behavior); (iv) management and maintainability
throughout the project lifespan in which artifacts, probes and
actors are defined and deployed by different people (we envi-
sion specialized coordinators will have network management
responsibilities); (v) defining and ensuring privacy and security
(how to distinguish a user action from an actuator action,
how to handle artifact access privileges for probes); (vi)
interoperability of agents; (vii) dealing with code evolution
(what happens when the code is refactored, how to maintain
the binding between hosts and probes as hosts evolve and
change identity); (viii) how to ensure scalability (what happens
when there are thousands of probes scattered around); (ix) how
to ensure that the system remains extensible and continues to
support incremental evolution.

The proposed ecosystem unifies both a programmatic
paradigm and a physical metaphor with existing analysis
techniques and quality methods. It crosscuts many research
fields, including DSLs, sensor networks, static analysis, pro-
filing, continuous integration, recommender systems, technical
debt, software entropy, mining software repositories, defect
prediction, issue tracking, and process instrumentation. As
such, the approach builds upon these existing research areas.
Because of its distributed nature, the approach is particularly
applicable in globally distributed software engineering, where
tool support is critical [3].

IV. COMPARISON TO RELATED WORK

The system closest to the approach proposed in this paper is
Hackystat [6], an open-source software telemetry framework
for automated collection and analysis of software engineering
process and product data. Similar to CodeAware, Hackys-
tat adopts an in-process and unobtrusive approach. However
CodeAware’s distributed nature differs from Hackystat’s local

554

approach: Hackystat collects data directly from engineer’s ac-
tivities and local artifacts inside the development environment,
and then may aggregate these data for visualization by the
team. Hackystat sensors are associated with the local project
within the local development environment, and not with the
shared codebase and its artifacts. CodeAware stays loyal to the
physical sensor-actuator paradigm in that the agents, sensors
and actuators move with the code, rather than being confined to
a single local development environment. Hackystat is a passive
system, and unlike CodeAware, does not define agents that
perform corrective and preventive actions.

V. CONCLUDING REMARKS

This paper proposed CodeAware, a sensor-actuator-based
ecosystem for fine-grained monitoring and management of
software artifacts. The ecosystem does not only provide in-
tegrated mechanism for giving early and targeted feedback to
engineers about parts of the code that are of interest to them
on an individual basis, but also allows engineers to automate
follow-up actions. CodeAware represents our future vision of
CI systems. We believe that CI systems should evolve to
consider developer and team perspectives simultaneously and
unify them.

Our colleague Dr. Burak Turhan’s following analogy best
expresses the paradigm shift underlying CodeAware:

When you want to instrument a car, you don’t attach
sensors to the factory, but you attach them to the car.

REFERENCES
[1

—

José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. Continuous
test generation: Enhancing continuous integration with automated test
generation. In Proceedings of the 29th International Conference on
Automated Software Engineering, pages 55-66, 2014.

Brian Cole, Daniel Hakim, David Hovemeyer, Reuven Lazarus, William
Pugh, and Kristin Stephens. Improving your software using static analysis
to find bugs. In Companion to the 21st Symposium on Object-oriented
programming systems, languages, and applications, pages 673-674, 2006.
Kevin Dullemond, Ben van Gameren, and Rini van Solingen. How tech-
nological support can enable advantages of agile software development
in a GSE setting. In Proceedings of the 4th International Conference on
Global Software Engineering, pages 143—152, 2009.

Martin Fowler and Matthew Foemmel. Continuous Integration. (Thought-
Works) http://www.thoughtworks.com/ContinuousIntegration.pdf,
2006.

Reid Holmes and Robert J. Walker. Customized awareness: Recom-
mending relevant external change events. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 10, pages 465-474, New York, NY, USA, 2010. ACM.

Philip M Johnson, Hongbing Kou, Joy M Agustin, Qin Zhang, Aaron
Kagawa, and Takuya Yamashita. Practical automated process and product
metric collection and analysis in a classroom setting: Lessons learned
from Hackystat-UH. In Proceedings of the International Symposium on
Empirical Software Engineering, pages 136—144, 2004.

Thomas Kowark and Hasso Plattner. Analyzed: a shared tool for analyzing
virtual team collaboration in classroom software engineering projects. In
The 2012 International Conference on Frontiers in Education: Computer
Science and Computer Engineering, 2012.

Arie van Deursen, Ali Mesbah, Bas Cornelissen, Andy Zaidman, Martin
Pinzger, and Anja Guzzi. Adinda: a knowledgeable, browser-based
IDE. In Proceedings of the 32nd International Conference on Software
Engineering, pages 203-206, 2010.

Andreas Zeller. The future of programming environments: Integration,
synergy, and assistance. In Future of Software Engineering, pages 316—
325. IEEE Computer Society, 2007.

2

—

3

—

[4

=

[5

—

[6

—

[7

—

[8

—

[9

—

ICSE 2015, Florence, Italy
New Ideas and Emerging Results

