A Diagnosis-Based Approach to Software Comprehension

Alexandre Perez
Department of Informatics Engineering
Faculty of Engineering, University of Porto
Porto, Portugal

alexandre.perez@fe.up.pt

ABSTRACT

Program comprehension is a time-consuming task performed
during the process of reusing, reengineering, and enhanc-
ing existing systems. Currently, there are tools to assist
in program comprehension by means of dynamic analysis,
but, e.g., most cannot identify the topology and the interac-
tions of a certain functionality in need of change, especially
when used in large, real-world software applications. We
propose an approach, coined Spectrum-based Feature Com-
prehension (SFC), that borrows techniques used for auto-
matic software-fault-localization, which were proven to be
effective even when debugging large applications in resource-
constrained environments. SFC analyses the program by
exploiting run-time information from test case executions to
compute the components that are important for a given fea-
ture (and whether a component is used to implement just
one feature or more), helping software engineers to under-
stand how a program is structured and what the function-
ality’s dependencies are. We present a toolset, coined PAN-
GOLIN, that implements SFC and displays its report to the
user using an intuitive visualization. A user study with the
open-source application Rhino is presented, demonstrating
the efficiency of PANGOLIN in locating the components that
should be inspected when changing a certain functionality.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement— Restructuring, reverse engineer-
ing, and reengineering

General Terms
Algorithms

Keywords

Software Evolution and Maintenance, Fault Diagnosis, Pro-
gram Comprehension

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPC 14, June 2-3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

Rui Abreu
Department of Informatics Engineering
Faculty of Engineering, University of Porto
Porto, Portugal

rui@computer.org

1. INTRODUCTION

Software maintenance is a crucial part of software engi-
neering. The need to add or change new features to existing
software applications is becoming more and more prevalent.
Furthermore, the ever increasing complexity of software sys-
tems and applications renders software maintenance even
more challenging.

One of the most daunting tasks of software maintenance
is to understand the application at hand [1]. In fact, re-
cent studies point out that developers spend 60% to 80% of
their time in comprehension tasks [2]. During this program
understanding task, software engineers try to find a way to
make both the source-code and the overall program func-
tionality more intelligible. One of these ways is to create a
“mental map” of the system structure, its functionality, and
the relationships and dependencies between software com-
ponents [3, 4].

To fully understand how a software application behaves,
software engineers need to thoroughly study the source-code,
documentation and any other available artifacts. Only then
the engineer gains sufficient understanding of the applica-
tion, enabling him/her to seek, gather, and make use of avail-
able information to efficiently conduct the desired mainte-
nance or evolution tasks. This program comprehension (also
known as program understanding / software comprehension)
phase is thus resource and time consuming. In fact, studies
show that up to 50% of the time needed to complete mainte-
nance tasks is spent on understanding the software applica-
tion and gaining sufficient knowledge to change the desired
functionality [1]. Currently, there are several approaches
that focus on dynamic analysis to provide visualizations of
the software system, identifying their components and their
relationships, e.g.: [5, 6, 7]. However, these approaches may
not clearly show what code regions the developer needs to
inspect in order to change a certain functionality. Another
problem regarding dynamic analysis is the fact that pro-
gram traces of sizable programs encompass large amounts
of data [8]. This may lead to not only scalability issues
when gathering/storing traces but also challenges concern-
ing visualizing such a vast amount of information.

To address some of the issues of past approaches, we pro-
pose an approach, coined Spectrum-based Feature Compre-
hension (SFC), that exploits techniques used in the software
fault-localization domain. Fault-localization techniques ex-
ploit coverage information of test cases to calculate the like-
lihood of each component being faulty, and were shown to
be efficient, even for large, resource-constrained environ-
ments [9]. Our approach leverages these concepts to provide

an efficient dependency analysis and visualization for soft-
ware comprehension that does not have the same scalability
hindrances as other related work.

To support the effectiveness of our approach, we apply
information-foraging-based theory. Information-foraging is
a theory to explain and predict how people use environmen-
tal information to achieve their goals [10]. It builds its hy-
pothesis upon optimal foraging theory, drawing from noticed
similarities between users’ information searching patterns
and animal food-foraging strategies. Information-foraging
theory assumes that human beings have the capability to
efficiently filter irrelevant information out, so that they
achieve their goal at minimum cost (e.g., time it takes to
change a feature).

To assess the effectiveness of our approach, we have con-
ducted a user study with the open software project Rhino.
It demonstrated the effectiveness of the SFC approach and
its visualizations in aiding users to pinpoint the components
that need to be inspected when evolving/changing a certain
feature in the application.

The paper makes the following contributions:

e We propose Spectrum-based Feature Comprehension
(SFC), an approach that, similar to fault-localization
techniques, exploits run-time information from system
executions to identify dependencies between compo-
nents, helping software engineers in understanding how
a program is structured.

e We propose an information-foraging theory to support
the effectiveness of our approach.

e We provide a toolset, PANGOLIN, providing a visual-
ization of associated and dissociated components of an
application functionality.

e A user study with a large, real-world, software project,
demonstrating the effectiveness of our approach in lo-
cating the components that should be inspected when
evolving/changing a certain functionality.

To the best of our knowledge, an approach that leverages
spectrum-based fault-localization techniques to improve pro-
gram understanding has not been described before.

The remainder of this paper is organized as follows: In
Section 2 we introduce the concepts relevant to this paper,
namely program spectra and fault-localization. Section 3
will present our spectrum-based feature comprehension ap-
proach. Section 4 introduces the PANGOLIN toolset that im-
plements our approach as an Eclipse plugin. In Section 5
we describe the user study setup and present its results. We
provide an overview of the related work and how it compares
to PANGOLIN in Section 6. Finally, in Section 7, we conclude
and discuss future work.

2. PRELIMINARIES

In this section, spectrum-based fault-localization is de-
tailed. After that, an approach to visualize diagnostic re-
ports is presented.

2.1 Spectrum-based Fault-Localization
Spectrum-based Fault-Localization (SFL) is a debugging

technique that calculates the likelihood of a software compo-

nent being faulty [11]. It exploits information from passed

Runs
largest() { 112[3]14]5[6] so
1: int a,b,c,large; ® @ 0 0 0 o 041
2: print ("Enter 3 numbers"); | 0| e o o e 04l
3: read(a, b, c); |0 0 o o e 04l
4: if (a>b) { o 0 o 0| 0|0 04l
5: if (a>c) [] ® @ @ 05
6: large = a; [® | 00
7: else large = a; //BUG o [0.71
8: } [] ® O @ 05
9: else if (b>c) C BN) 0.0
10: large = b ; [0.0
11: else large = c; [0.0
12: print("Largest: ",large); | @ | @ | @ | ®@ | ® | @ | 0.4]1
} Error vector: | v |V |V |V | X | V
(a) Test coverage information.
Ranking ‘ so ‘ Statement
1 | 071 | 7: else large = a;
2 | 050 | 5: if (a>c)
3 050 |8 ¥
4 | 041 | 1: int a,b,c,large;
5 | 041 | 2: print("Enter 3 numbers");
6 | 041 | 3: read(a, b, ©);
7 | 041 | 4: if (a>b) {
8 | 041 | 12: print("Largest: ",large);

(b) Faulty statement ranking.

Figure 1: Example of SFL technique with Ochiai
coefficient.

and failed system runs. A passed run is a program execution
that is completed correctly (i.e., the program behaves as ex-
pected), and a failed run is an execution where an error was
detected [9]. The criteria for determining if a run has passed
or failed can be from a variety of different sources, such as
test-case results and program assertions, among others. The
execution information gathered for each run is their program
spectra.

A program spectrum is a characterization of a program’s
execution on an input collection [12]. This collection of data
consists of counters of flags for each software component,
and is gathered at runtime. Software components can be
of several detail granularities, such as classes, methods, or
statements. A program spectrum provides a view on the
dynamic behavior of the system under test [13]. Many types
of program spectra exist. This paper focuses on registering
whether a component is touched or not during a certain
execution, so binary flags can be used for each component,
yielding a small memory footprint. This particular form of
program spectra is also called hit spectra [13].

The hit spectra of N runs constitute a binary N x M ma-
trix A, where M corresponds to the instrumented compo-
nents of the program. Information of passed and failed runs
is gathered in an N-length vector e, called the error vector.
The pair (A, e) serves as input for the SFL technique.

With this input, the next step consists in identifying what
columns of the matrix A (i.e., the hit spectrum for each
component) resemble the error vector the most. This is done
by quantifying the resemblance between these two vectors by
means of similarity coefficients [14].

One of the best performing similarity coefficients for fault-
localization is the Ochiai coefficient [15]. This coefficient was
initially used in the molecular biology domain [16], and is
defined as follows:

sor(7) — n11(7) 1
N N ET) HE O E=)

where n,4(j) is the number of runs in which the component
j has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (¢ = 1)
or passed (¢ = 0). For instance, nio(j) counts the number of
times component j has been involved in passing executions,
whereas no1(j) counts the number of failing executions that
do not exercise component j. Formally, npq(j) is defined as:

npq(j):|{i|aij:p/\ei:q}| (2)

Several other similarity coefficients do exist [17], namely the
O" coefficient, but these are comparable to Ochiai, and do
not change how the approach works.

The calculated similarity coefficients rank the software
components according to their likelihood of containing the
fault. This is done under the assumption that a component
with a high similarity to the error vector has a higher proba-
bility of being the cause of the observed failure. A list of the
software components, sorted by their similarity coefficient,
is then presented to the developer. This list is also called
diagnostic report, and helps developers prioritize their in-
spection of software components to pinpoint the root cause
of the observed failure.

We show Figure 1 as an example of the SFL technique.
Under test is a function named largest() that reads three
integer numbers and prints the largest value. This program
contains a fault on line 7 — it should read large = c;. Fig-
ure la shows the function code, as well as the coverage trace
and outcome of six test cases. With this information, sim-
ilarity coefficients can be calculated for each line using the
Ochiai coefficient (Equation (1)). The bigger the coefficient,
the more likely it is that a line contains a fault.

Tools that use SFL for their diagnosis, such as Zoltar [18],
rank these similarity coefficients to form an ordered list of
the probable faulty statements (also referred to as diagnostic
report), and present it to the user. Users can then start
inspecting the statements located in the higher positions of
the diagnostic report, until they reach the faulty statement.
Figure 1b depicts the diagnostic report generated by these
tools for our largest () example.

2.2 Diagnostic Report Visualization

To improve the intuitiveness of the diagnostic report
generated by SFL, interactive visualization techniques
have been proposed and are available within the GZoltar
toolset’ [19, 20]. GZoltar is a fault-localization plugin
for the Eclipse® integrated development environment. Be-
sides fault-localization, GZoltar also provides mechanisms
for test-suite minimization and prioritization [21], but those
are beyond the scope of this paper.

GZoltar provides developers with several different visu-
alizations, namely sunburst, vertical partition, and bubble
hierarchy. According to user feedback, the sunburst visual-
ization was deemed the most intuitive [20]. In this visualiza-

! Available at http://www.gzoltar.com
2 Available at http://www.eclipse.org

O] ®@ 6 @

project.packageroot.package.file.class.method.line

@ ®

Figure 2: Sunburst Visualization Example.

tion, each ring denotes a hierarchical level of the source-code
organization, as depicted in Figure 2. From the inner to the
outer circle, this visualization presents projects, packages,
files, classes, methods, and lines of code. Navigation in this
visualization is done by clicking on a component, which will
display all the inner components of the selected one. As an
example, if a user clicks in a class, all of the class methods
will be displayed. Users may also zoom in/out and pan to
analyze in detail a specific part of the system. Any inner
component can also be set as the new root of the visualiza-
tion, and only that component’s sub-tree is displayed. This
operation is called a root change. The color of each com-
ponent in the visualization represents its likelihood of being
faulty. Ranging from bright green if the similarity is close to
zero; to yellow if the similarity is close to 0.5 and finally to
red if the component’s similarity to the error vector is close
to 1.

The effectiveness of these fault-localization techniques and
the hierarchical visualization was also demonstrated in a
user study [20], where 40 participants, without any knowl-
edge of the system under test, were asked to locate a fault
in under 30 minutes. Everyone using the hierarchical visual-
ization with diagnostic information was able to find the bug,
whereas only 35% of the participants of the control group
succeeded.

3. SPECTRUM-BASED FEATURE COM-
PREHENSION

This section details our approach coined Spectrum-based
Feature Comprehension (SFC) that uses the techniques and
code visualizations mentioned in the previous section in the
context of program comprehension.

3.1 Concepts & Definitions

To use these fault-localization techniques, its concepts and
definitions need to be mapped into the program understand-
ing domain. The first one is the notion of a feature.

Definition 1 A feature is the source-code portion that im-
plements a certain functionality. It can encompass one or
more components.

When trying to evolve/modify a certain feature f, we are
interested in the relationships and interactions between f
and other components in the source-code. As such, one
should not use the error vector e to compute the similar-
ity coefficient (cf. Section 2.1). Instead, an evolution vector
evy should be used.

Definition 2 The evolution vector evs is an N-length bi-
nary vector. In this vector, a given position i is true (i.e.,
set as 1), if the it" test run exercises feature f.

When evolving a feature f, it is important to inspect its
associated components because they may either call f or be
called by f, and thus may need to be modified in accordance
with the changes made to f.

Definition 3 A component j is associated with f if its
similarity coefficient with f is close to 1. This means that
when f is executed, j is likely to be executed as well.

In contrast to associated components, if a component is
dissociated to f, it does not need to be inspected when f is
modified.

Definition 4 A component j is dissociated to f if its sim-
tlarity coefficient with f is close to 0. This means that when
f is executed, j is not likely to be touched by the execution.

Components with a similarity coefficient of neither 0 nor 1
should be inspected, but only modified with great care. This
is because these components are shared amongst features.

3.2 Approach

The SFC approach is depicted in Algorithm 1. The inputs
for the algorithm are:

e P — the program under evaluation.
e U — set of system runs.
o Uy — set of runs exercising feature f.

The output is the report R, which is a list of components,
each containing its association measure (in this paper, mea-
sured in terms of the Ochiai similarity coeflicient) to the
feature under consideration.

First, the variables N and M are set, corresponding to
the size of the test suite and the number of components
that exist in program P, respectively (Lines 1 and 2).

Subsequently, all system runs U of the program P are exe-
cuted (Line 4), yielding the program spectra matrix A. This
matrix contains the execution traces for every system runs
in U. Next, the evolution vector is calculated, by comparing
each line of the matrix A to the coverage of the runs that
exercise the feature Uy.

Algorithm 1 Spectrum-based Feature Comprehension.

Input:
Program P
Set of runs U

Set of runs that exercise the feature Uy

Output:
Report R

1: N « U]

2: M <~ NUMCOMPONENTS(P)

3 R+

4: A + EXEC(P,U)

5: ev <~ UPDATE(A, Uy)

6: Vieqr..my s no1(d),n10(5), n11(j) < 0

T Vje{l.”M},ie{l...N} :n01(j) + [{i] aij = 0 A ev; = 1}
8 Vier..myie{r..n} 1 n10(j) < {4 | aij = 1 Aevi = 0}]
9: Vieqr..myicqr..ny s nai(g) < {i] ay; =1 Aevy =1}
10: Vieqr..ary @ R[] <= so(noi(4), no(4), n11 ()

11: return R

Following, in Lines 6 to 9 the occurrence variable n,, (as
described in Section 2.1) is calculated for each component
of program P.

Finally, for each component, the similarity is calculated
with using the Ochiai coefficient (see Equation (1)), and
stored in the report R. Unlike what happens in SFL, the
report R does not have to be sorted. This is because the
report will not be inspected as a ranking by the user.

In this report R, an association measure is attributed to
each component. If a component has an association mea-
sure of 1, it means that the component is associated with
the feature, and only is executed in runs where the feature
is exercised. An association measure of 0 means that the
component is dissociated, and is never called by the feature.
Association measures in between 0 and 1 mean that the
components can be executed even when the feature is not
exercised, so they require further inspection by the developer
before modifying them, as they can break other unrelated
functionality.

3.3 Complexity Analysis

As for the space complexity, the generated program spec-
tra matrix A has a complexity of O(M - N). The evolution
vector and the report R complexities are O(N) and O(M),
respectively. Therefore, the worst case space complexity is
OM-N+ N+ M).

The time complexity is as follows. Assuming that all sys-
tem runs in set U are executed and take the same amount of
time to execute, the complexity of this test execution step
is O(N). As for the evolution vector computation, its worst
case time complexity is O(M - N). The computation of the
npq occurrence function also has a complexity of O(M - N).

Finally, the Ochiai coefficient calculation to populate the
report R is O(M). The worst case time complexity is O(M -
N+ N+ M).

3.4 Report Visualization

To visualize the report produced by our approach, we use
the Sunburst visualization, just like the GZOLTAR frame-
work. We apply information-foraging theory to explain the
usefulness of the sunburst visualization for improving source-
code understanding. Information-foraging theory aims to
both “explain and predict how people will best shape them-
selves for their information environments and how informa-
tion environments can be shaped for people”, as defined by
Peter Pirolli [10].

This theory is itself based on optimal foraging theory, that
tries to explain the behavior of predators and preys. Preda-
tors try to find preys by following their scent, and preys
are more likely to be in places (or patches) where the scent
is more intense. In the information-foraging context, the
predators are the people in need of information and the preys
are the information itself. The scent is the interpretation of
the environment by the predators. Sjoberg et al. [22] sug-
gests that a theory is best used to explain (at least one) of
the following questions: what is, why, forecast future events,
and guiding how to do something. Information-foraging the-
ory can be used to answer all these questions.

In order to apply this information-foraging theory in the
context of automatically generated diagnostic reports, a
mapping between the theory constructs and this context
must be established. Closely following the theory proposed
by Lawrence el al. [23] for the context of debugging, in this
paper we map the information-foraging theory constructs as
follows:

e Predator is the person performing the maintenance
task;

e Prey is what the predator seeks to know to pinpoint
the code regions that need to be changed;

e Information patches are localities in the source-code
that may contain the prey;

e Proximal cues are the runtime behaviors that suggest
scent related to to the prey;

e Information scent is the predator interpretation of the
report;

e Topology is the collection of paths through the source-
code and report through which the programmer can
navigate. In essence, it includes IDE features that help
navigating the code.

The topology is a graph representing elements of the
source-code (e.g., classes, methods) and the diagnostic re-
port with navigable links between elements. The navigable
links between the elements allow the programmer to traverse
the connection at the cost of just one click. Information-
foraging theory assumes that the developer’s choices are an
attempt to maximize the information gain per navigation
interaction’s cost. As in [24], this can be characterized as

choice = mazx g
o C

where G is the information gain and C is the cost of the
interaction (including both the visualization and the IDE
features). Since the G and C values are not known to the

developer a priori, his decisions will be based on the ex-
pected gain and cost.

When looking for the code regions that need to be
changed, the developer relies on the cues to decide which
place to inspect next. Those cues are used to estimate the
trade-off between the navigation cost and the value to be
gained. In an attempt to take the best decision, the devel-
oper will favor links whose cues will lead him to the location
of code regions in need of change. Better cues are therefore
more likely to lead to better information scent, hence reduc-
ing the cost incurred while maximizing the value gained.

By analyzing the Sunburst visualization described in Sec-
tion 2.2 in regard to information-foraging, we may argue that
its visualization of the system’s topology and its interaction
features can indeed reduce the cost of navigation through the
various system components (be it packages, classes, meth-
ods, even statements) and thus C is reduced. The color
coding of each component, which is obtained from the fault-
localization ranking, can be regarded as a proximal cue,
guiding the developer towards likely associated regions of
the source-code and at the same time, notifying the devel-
oper about regions that should not be explored (where, e.g.,
relevant executions have not touched). Hence, a better in-
formation scent is conveyed to the developer, increasing the
information gain.

4. PANGOLIN TOOLSET

In this Section, we introduce the PANGOLIN toolset®, an
Eclipse plugin that implements the SFC approach and dis-
plays its results with the aid of a sunburst visualization.

000 Resource - Ecipee lstiorr,
B0 R e " a £ St

T S
L iy
CW L L A

LEED e

I

Figure 3: Pangolin’s sunburst visualization.

The PANGOLIN plugin performs a dynamic analysis by
instrumenting the project, so that the activity matrix is
gathered during runtime. The plugin uses the project’s
JUnit test cases as the set of system runs. In order to
perform the analysis, users must also identify in a specific
view which system runs exercise the feature under consid-

3PANGOLIN is available online. To install the PANGOLIN
toolset, users need to request a license at www.gzoltar.com/
pangolin.

eration. After that, PANGOLIN plugin computes a feature-
association-measure for every component in the project, and
displays that information in a sunburst visualization, as
shown in Figure 3. This sunburst visualization depicts the
current project’s topology in a hierarchic fashion, starting
from the root component representing the whole project in
the inner circle, up to individual lines of code in the outer
circle. Each component is color coded with the correspond-
ing association measure, ranging from bright green if the
association measure is close to zero; to yellow if the associa-
tion measure is close to 0.5 and to red it is close to 1. When
a user hovers the mouse on a component, a label identify-
ing that component and its association measure is shown,
as depicted in Figure 3. If he/she clicks that component,
Eclipse’s code editor will open and the cursor is positioned
on the start of the chosen component.

We also enhanced the sunburst visualization to show a
summary of what each code class is responsible for. We rank
every term used in each class file and apply term frequency-
inverse document frequency (if-idf) weighing, commonly
used in the Information Retrieval domain [25]. The tf-idf
value increases proportionally to the number of times a term
appears in the document (in this case, a class file). However,
it is also offset by the frequency of that term in the over-
all collection of documents, so that common terms have less
weight. Top terms in the ranking are shown when hovering
a class component in the visualization, with the intent of
providing more cues to the developer, improving his under-
standing of the program.

5. USER STUDY

In this section, we evaluate the effectiveness of SFC when
applied to a real-world application — the Rhino project.
First, we describe the subject of our evaluation and the setup
for our user study. Afterward, we present the results of the
user study and potential threats to validity.

5.1 The Rhino Project

The software application under consideration for this
case study is the open-source project Rhino*. Rhino is a
Javascript engine written entirely in Java and is managed
by the Mozilla Foundation. It is typically embedded into
Java applications to provide scripting to end users and also
allows JavaScript programs to leverage Java platform APIs.
Rhino automatically handles the conversion of JavaScript
primitives to Java primitives, and vice versa (i.e.: JavaScript
scripts can set and query Java properties and invoke Java
methods). Rhino is comprised by 28 packages, 433 classes
and 75170 source lines of code. Furthermore, this project
contains 448 unit tests, written for the JUnit framework.

5.2 User Study Setup

The user study was performed by 108 students enrolled in
the Software-Engineering course of the Master in Informat-
ics and Computing Engineering program from the Faculty of
Engineering of University of Porto. All participants had at
least three years of experience with the Java programming
language and were familiar with both the Eclipse IDE and
the JUnit testing framework, which are requirements to en-
roll in the Software Engineering course. None had, however,

4Available at https://developer.mozilla.org/en-US/
docs/Rhino

Feature Implementation (1)

Coverage

Coverage of
Intersection of Remaining
Feature Tests Tests

Shared Code between Features (2)

Figure 4: Feature analysis with a coverage tool.

used Rhino before. Participants were grouped into pairs to
perform the requested task, which was also a course require-
ment.

The requested task was the following. Participants were
requested to identify source-code regions that (1) exclusively
implement a certain feature, and also regions where (2) that
feature is being used (i.e., code regions shared among differ-
ent features). It is important to distinguish between these
two kinds of regions when changing a feature. While de-
velopers can change regions labeled as (1) without many
concerns, regions labeled as (2) require a more detailed in-
spection before changing the code, as the changes can break
other functionalities. The feature under consideration for
this user study was Rhino’s context creation. This feature
is responsible for creating a context, which contains the ex-
ecution information needed to run Javascript code. One ex-
ample of the information stored in a context is the call stack
representation. A tutorial explaining the feature in detail
was given to all participants®. The set of tests that exercise
the creation of contexts was given to all participants and a
time limit of 100 minutes was established to complete the
task.

Participants were divided into two groups. One group
comprised 26 pairs of participants was asked to use the PAN-
GOLIN plugin to complete the task. As all participants were
unfamiliar with PANGOLIN, a short tutorial explaining how
to work with the tool (and how to interpret the results) was
shown. In order for this group of participants to successfully
complete the task, they need to use the tool to indicate the
set of tests exercising the feature and run PANGOLIN’s analy-
sis. After the analysis is complete, the sunburst visualization
appears in the corresponding Eclipse view. To identify the
code regions that implement the feature (1), participants
should look for components whose association measure is 1
(color coded as red). Code regions shared among several
features (2) are components whose association measure is
above 0 and below 1, and therefore color coded as different
shades of yellow.

The other group of participants comprised by 28 pairs was
the control group. Participants were asked to use the fea-
tures from a standard version of the Eclipse IDE and its

5 All tutorials produced for this user study are available on-
line at http://gzoltar.com/pangolin/tutorial

code-coverage plugin EclEmma®, that shows, for a set of
tests, what statements were executed. A short tutorial on
how to work with EclEmma plugin was given beforehand.
For the task to be successfully completed, participants need
to gather the code-coverage information of all tests that ex-
ercise the feature, and compute their intersection. The in-
tersection between these tests denotes the code regions that
were executed on every test. A set difference between this
intersection and the coverage of remaining tests in the test
suite allows us to identify the regions that (1) exclusively
implement the feature and that (2) are shared among many
features, as is depicted in Figure 4.

5.3 Results

For the particular feature considered in this user study,
Rhino’s context creation (described in the previous subsec-
tion), users had to identify code regions in 3 classes that ex-
clusively implement the feature (1), and another 41 classes
where that feature is used among many others (2).

From the group that used the PANGOLIN plugin, partici-
pants were able to correctly identify a median of 2.5 classes
from category (1) and 13.5 from category (2). In the group
that used the code-coverage plugin EclEmma, participants
identified a median of 0.5 classes from category (1) and 35
from category (2). Figure 5 shows violin plots” depicting
the amount of correct components detected by participants.
We can see that, for identifying components in category (1),
participants working with PANGOLIN were able to achieve
better results. In fact, over two thirds of the pairs of par-
ticipants working with that plugin were able to find at least
two correct components (out of three in total), as opposed
to participants using EclEmma, where only 5 pairs identi-
fied at least two correct components. As for the identifi-
cation of components from category (2), participants using
EclEmma showed an increased overall accuracy when com-
pared to PANGOLIN.

However, and along with the correct code regions, there
were several false positives identified by participants. The
group using EclEmma registered a median of 6 while identi-
fying regions that exclusively implement the feature, while
the group using PANGOLIN registered a median of 0 false
positives. The second category, code regions with shared
features, yielded a median of 53.5 false positives when us-
ing EclEmma versus only 1 false positive when PANGOLIN
is used. The amount of false positives each pair of partici-
pants identified can be seen in the violin plots from Figure 6.
Figure 6a concerns the false positives while identifying code
regions for category (1), whereas Figure 6b shows the false
positives while identifying category (2). In both categories,
we see a substantial increase in the amount of false positives
when the code-coverage EclEmma plugin is used to perform
the requested task. This happens because the majority of
participants using EclEmma, after gathering code-coverages
for the indicted test cases, did not perform an intersection
of the traces, as depicted in Figure 4. As a result, a consid-
erable number of components were labeled incorrectly.

The last metric gathered was the time each pair of par-
ticipants took to complete the task. Although a time limit
of 100 minutes was established, only two pairs required that
amount to submit their results. Figure 7 depicts the elapsed

6 Available at http://www.eclemna.org/
A violin plot is the combination of a box plot and a kernel
density plot.

2.0

1.5

Detected Components

1.0

0.5

T T
EclEmma Pangolin

(a) Detected implementation components.

Detected Components
20 30 40
! !

10
|

[

EclEmma Pangolin

(b) Detected shared components.

Figure 5: Detected components.

time for each pair of participants. In this plot, the pairs of
participants were sorted by ascending order of time taken.
This was done with the aim of increasing legibility. Overall,
the group using PANGOLIN completed the task in less time
compared to the group using EclEmma. Participants using
PANGOLIN took a median of 50 minutes to complete, whereas
participants working with the EclEmma plugin took 60 min-
utes. The main reason for participants using EclEmma tak-
ing longer to complete the task is the fact that, after gath-
ering the coverage information, they needed to perform the
coverage analysis as shown in Figure 4. Participants using
PANGOLIN only needed to gather the information shown to
them via the sunburst visualization. No extra analysis was
required.

We also performed statistical tests to assess wether the
gathered metrics yielded statistically significantly different
results. The statistical test used is the Wilcoxon signed-

o |
@
o
©
o
]
=
3
o
)
©® o
(SHE
w
o _|
«
I
o - rv

T T
EclEmma Pangolin

(a) False positives labeled as implementation components.

False Positives
100
!

o
>
o
o
5 -
o _|
0
1
o r
T T

EclEmma Pangolin

(b) False positives labeled as shared components.

Figure 6: False positives while identifying system
components, sorted by ascending order.

rank [26]. The reason we use Wilcoxon instead of, e.g., Stu-
dent’s t-test is because it does not assume that the data
is normally distributed. According to these statistical tests,
the two groups of participants can be considered significantly
different with 97% confidence.

Results show that the information about the program pro-
vided by the SFC analysis and the sunburst visualization is
more accurate than requiring users to inspect and compare
several traces with a code-coverage tool. Although in cate-
gory (2), users working with EclEmma were able to detect
more components, this approach yielded a large number of
false positives, which will most likely increase the compre-
hension effort, as users will need to inspect those compo-
nents and deem then dissociated from the feature. From
an information-foraging standpoint, we argue that due to
the intuitiveness of the visualization and accuracy of SFC,

120

T
Eclémma ——
Pangolin

100 |- /—4

80 - -

60 - -

Time (minutes)

40| 1

200 -

ol v e e e e e e e
12 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Groups

Figure 7: Time required by each pair of participants
to complete the task, sorted by ascending order.

PANGOLIN provides better cues than the EclEmma and, ul-
timately, increases the perceived information gained about
the system being inspected.

5.4 Threats to Validity

The main threat to the external validity of these results
is the fact that participants were given the set of tests that
exercise the feature under consideration. Information about
what features each test is exercising may not be available or
difficult to obtain. In fact, software projects may not even
have tests for every feature.

Another threat to external validity is the fact that only
one feature of one open-source application was used in the
study. It is plausible to assume that a different set of sub-
jects, having inherently different characteristics, may yield
different results. Also, all participants in the user study
were software engineering students, and the study was per-
formed in an academic setting, so it may not correctly repro-
duce the problems that the industry deals with. However,
we argue that our setting closely resembles an important
challenge faced in the software industry regarding program
comprehension: introducing junior programmers into well
established projects.

6. RELATED WORK

Various techniques and tools were developed as a result of
several years of research into trace visualization and feature
localization [27, 28]. This section provides an overview — not
meant to be exhaustive — of the related work in this area.

6.1 Trace Visualization

De Pauw et al. [29, 5] have developed a tool - termed Jin-
sight - for visually exploring a program’s runtime behavior.
Although this tool was shown to be useful for program com-
prehension, scalability concerns render the tool impractical
for use in large applications. Reiss [6] states that execution
traces are typically too large to be visualized and understood
by the user. As such, Reiss proposed a way to select and
compact trace data to improve the visualization’s intelligi-
bility. Live run-time visualizations have also been proposed
as a way to reduce overheads [30], but make it harder to
visualize entire executions.

Ducasse et al. [31] propose a way of representing con-
densed runtime metrics (such as attribute-usage frequencies,

object allocation frequencies, object lifetime, among others)
with the use of polymetric views. Greevy et al. [7] proposes a
3D visualization of the run-time traces of a software system.
Greevy displays the amount of information about a compo-
nent as a tower whose height is influenced by the amount of
instances created. The main objective of this technique is
to determine which system regions are involved in the exe-
cution of a certain feature, but the visualization may not be
trivial to grasp.

Cornelissen et al. [32, 33] developed a tool - Extravis -
that visualizes execution traces by employing two synchro-
nized views: a circular bundle view for structural elements
and an interactive overview via a sequence view. Its effec-
tiveness was also demonstrated for three reverse engineering
contexts: exploratory program comprehension, feature de-
tection and feature comprehension. Pinzger et al. [34] pro-
poses DA4Java, a tool that represents the source-code as
a nested graph. Vertices in the graph represent code com-
ponents, such as packages, classes and methods, and edges
represent dependencies (e.g., inheritance or method calls).
Graph representations are also used in other works. Such
is that of Yazdanshenas et al. [35], which like PANGOLIN,
was abe to visualize information flow at various abstraction
levels. Ishio et al. [36] also used graphs to generate inter-
procedural data-flow paths. However, this analysis can also
generate infeasible paths.

Triimper et al. [37] implemented the TraceDiff tool, to ease
the comparison of large-scale system traces. The tool pro-
vides visualizations featuring a modified hierarchical edge-
bundling layout and icicle plot-node aggregation, so that the
scalability of large traces is addressed. Maletic et al. [38]
proposes the MosaiCode tool, that uses a 2D metaphor to
support the visualization and understanding of various as-
pects of large scale software systems. It supports multiple
coordinated views of these systems and leverages a mosaic
visualization to map their characteristics so that it is easy
to understand by programmers, managers, and architects.
Color and pixel maps are used to represent these character-
istics such as lines of code, functions, files, and subsystems.
MosaiCode is available as a stand-alone tool and is not in-
tegrated with a development environment.

Stengel et al. [39] developed the View Infinity tool. It pro-
vides a zoomable interface of software product lines (SPL).
In SPL, software is implemented in terms of reusable user-
visible characteristics, and is difficult to understand due to
its variability. Like PANGOLIN, this tool offered a customiz-
able granularity visualization, as well as a navigable inter-
face.

The SFC approach proposed in this paper differs from the
related work because of the low overhead necessary to com-
pute the association measures for all the application’s com-
ponents. Another advantage is that it can not only pinpoint
what components should be inspected and what components
can be completely disregarded when evolving a feature, but
also can warn about the existence of functionality that is
not properly modularized.

6.2 Feature Localization and Information-
Foraging
Work related to locating features in code includes the
software-reconnaissance approach proposed by Wilde et
al. [40, 41]. This approach tries to answer the question “In
which parts of this program is functionality X implemented?”

using only dynamic information, namely execution traces.
Similarly to SFC, the Software Reconnaissance approach
distinguishes two sets of test cases (or scenarios): scenarios
that activate the feature, and scenarios that do not activate
the feature. The former are used to locate the portions of
code that implement the feature and the latter are used to
reduce the size of those code portions. The SFC approach
differs from this approach as it uses similarity coefficients,
such as Ochiai, to assert the association of each line of code
to the feature.

Information-foraging-based theories to explain
information-seeking strategies have been wused in the
context of program comprehension and software engineering
before. Relevant works include those of Ko et al. [42] in
the context of software maintenance; Romero et al. [43],
Lawrance et al. [23], Flemming et al. [24] and Piorkowski et
al. [44] in software debugging; Chi et al. [45] and Spool et
al. [46] for website design and evaluation.

7. CONCLUSIONS

This paper proposes an automated dynamic method to re-
duce the effort required by developers in identifying depen-
dencies between features to be evolved (or maintained) and
the rest of the program. This approach, coined Spectrum-
based Feature Comprehension (SFC), is based on statistics-
based methods used in software-fault-localization. These
methods exploit run-time information (program spectra) of
test cases to calculate the likelihood of each component be-
ing faulty. In the field of software evolution, the resemblance
to the code being evolved is calculated for all components.
This can identify associated components, that need to be
changed, because they call or are called by the evolving
component, and the dissociated components, that can be
disregarded by the developer as they do not touch the func-
tionality under consideration.

A theory based on information-foraging to support the
effectiveness of our method is also described. This theory
draws similarities between users’ searching patterns and an-
imal food-foraging strategies. Also, a user study with the
open software project Rhino was carried out. It demon-
strated the effectiveness of the PANGOLIN approach in pin-
pointing the components that need to be inspected when
evolving/changing a certain feature and those that can safely
be disregarded.

For future work, as discussed in Section 5.4, we plan to
enhance the PANGOLIN tool so that users can, instead of us-
ing test cases, capture manual executions of the application
and label them as associated or dissociated with the feature.
This way, the SFC analysis can be applied without requir-
ing the project to have an ample test suite or requiring users
to peruse extensive test documentation. Users would only
need to first run the application and exercise the feature,
and then use other dissociated features so that the relevant
associated code slice becomes smaller. Second, we plan to
extend the amount of information provided to users in the
visualization, so that the perceived information gain of ex-
ploring a given component is more accurate. One way to
do this is by enhancing components when users are hovering
them with summaries of what each component is responsible
for. We plan to use code summarization-techniques that are
based on stereotypes [47, 48].

8.

ACKNOWLEDGEMENTS

We would like to thank the students from the Faculty of
Engineering of University of Porto for participating in our
user study. This work is partially funded by the ERDF
through the Programme COMPETE, the Portuguese Gov-
ernment through FCT - Foundation for Science and Tech-
nology, project reference FCOMP-01-0124-FEDER-020484.

9.
[1]
2]

3]

[13]

REFERENCES

T. A. Corbi. Program understanding: challenge for the
1990’s. IBM Syst. J., 28(2):294-306, 1989.

R. Tiarks. What programmers really do - an
observational study. Softwaretechnik-Trends, 31(2),
2011.

D.B. Lange and Y. Nakamura. Object-oriented
program tracing and visualization. Computer,
30(5):63-70, 1997.

M. Renieris and S. P. Reiss. Almost: exploring
program traces. In Proceedings of Workshop on New
Paradigms in Information Visualization and
Manipulation (NPIVM’99), pages 70-77, 1999.

W. De Pauw, D. Lorenz, J. Vlissides, and

M. Wegman. Execution patterns in object-oriented
visualization. In Proceedings Conference on
Object-Oriented Technologies and Systems
(COOTS’98), pages 219-234, 1998.

S. P. Reiss and M. Renieris. Encoding program
executions. In Proceedings of International Conference
on Software Engineering (ICSE’01), pages 221-230,
2001.

O. Greevy, M. Lanza, and C. Wysseier. Visualizing
live software systems in 3D. In Proceedings of ACM
symposium on Software Visualization (SoftVis '06),
pages 47-56, 2006.

A. Zaidman. Scalability solutions for program
comprehension through dynamic analysis. In
Proceedings of Furopean Conference on Software
Maintenance and Reengineering (CSMR 2006), pages
327-330, 2006.

R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van
Gemund. A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software,
82(11):1780-1792, 2009.

P. Pirolli. Information Foraging Theory: Adaptive
Interaction with Information. Oxford University Press,
Inc., New York, NY, USA, 1 edition, 2007.

R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. On
the accuracy of spectrum-based fault localization. In
Proceedings of the Testing: Academic and Industrial
Conference Practice and Research Techniques —
Mutation (Mutation’07), pages 89-98, 2007.

T. Reps, T. Ball, M. Das, and J. Larus. The use of
program profiling for software maintenance with
applications to the year 2000 problem. In Proceedings
of ACM SIGSOFT international symposium on
Foundations of software engineering
(ESEC’97/FSE’5), pages 432-449, 1997.

M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, and
L. Yi. An empirical investigation of the relationship
between fault-revealing test behavior and differences in
program spectra. STVR Journal of Software Testing,
Verification, and Reliability, (3):171-194, 2000.

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

22]

23]

(24]

(25]

[26]

27]

(28]

A K. Jain and R.C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., 1988.

R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. An
evaluation of similarity coefficients for software fault
localization. In Proceedings of Pacific Rim
International Symposium on Dependable Computing
(PRDC’06), pages 39-46, 2006.

A. da Silva Meyer, A.A.F. Garcia, A.P. de Souza, and
C.L. de Souza. Comparison of similarity coefficients
used for cluster analysis with dominant markers in
maize (zea mays l.). Genetics and Molecular Biology,
27:83-91, 2004.

L. Naish, H. Lee, and K. Ramamohanarao. A model
for spectra-based software diagnosis. ACM
Transactions on Software Engineering Methodology,
20(3):11, 2011.

T. Janssen, R. Abreu, and A.J.C. van Gemund.
Zoltar: A Toolset for Automatic Fault Localization. In
Proceedings of International Conference on Automated
Software Engineering (ASE’09), pages 662—664, 2009.
J. Campos, A. Riboira, A. Perez, and R. Abreu.
GZoltar: An eclipse plug-in for testing and debugging.
In Proceedings of International Conference on
Automated Software Engineering (ASE’12), pages
378-381, 2012.

C. Gouveia, J. Campos, and R. Abreu. Using HTML5
Visualizations in Software Fault Localization. In
Proceedings of IEEE Working Conference on Software
Visualization (VISSOFT’13), pages 1-10, 2013.

Jose Campos and Rui Abreu. Leveraging a Constraint
Solver for Minimizing Test Suites. In Proceedings of
the 13th International Conference on Quality Software
(QSIC ’13), pages 253-259, 2013.

D. Sjgberg, T. Dyba, B. Anda, and J. Hannay.
Building theories in software engineering. In Guide to
Advanced Empirical Software Engineering, pages
312-336. Springer London, 2008.

J. Lawrance, C. Bogart, M. Burnett, R. Bellamy,

K. Rector, and S. Fleming. How programmers debug,
revisited: An information foraging theory perspective.
IEEE Transactions on Software Engineering,
39(2):197-215, 2013.

S. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett,
R. Bellamy, J. Lawrance, and I. Kwan. An
information foraging theory perspective on tools for
debugging, refactoring, and reuse tasks. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 22(2):14:1-14:41, 2013.

C. Manning, P. Raghavan, and H. Schiitze.
Introduction to information retrieval. Cambridge
University Press, 2008.

F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics bulletin, 1(6):80-83, 1945.

B. Cornelissen, A. Zaidman, A. van Deursen,

L. Moonen, and R. Koschke. A systematic survey of
program comprehension through dynamic analysis.
IEEE Transactions on Software Engineering,
35(5):684-702, 2009.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53-95, 2013.

[29]

W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides.
Visualizing the behavior of object-oriented systems. In
Proceedings of Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA’93), pages 326-337, 1993.

Steven P. Reiss. Visualizing java in action. In
Proceedings of ACM Symposium on Software
Visualization (SoftVis’03), pages 57-65, 2003.

S. Ducasse, M. Lanza, and R. Bertuli. High-level
polymetric views of condensed run-time information.
In Proceedings of the Conference on Software
Maintenance and Reengineering, pages 309-318, 2004.
B. Cornelissen, D. Holten, A. Zaidman, .. Moonen,
J. J. van Wijk, and A. van Deursen. Understanding
execution traces using massive sequence and circular
bundle views. In Proceedings of International
Conference on Program Comprehension (ICPC’07),
pages 49-58, 2007.

B. Cornelissen, A. Zaidman, D. Holten, L. Moonen,
A. van Deursen, and J. J. van Wijk. Execution trace
analysis through massive sequence and circular bundle
views. Journal of Systems and Software,
81(12):2252-2268, 2008.

M. Pinzger, K. Grafenhain, P. Knab, and H.C. Gall. A
tool for visual understanding of source code
dependencies. In Proceedings of International
Conference on Program Comprehension (ICPC’08),
pages 254-259, 2008.

A R. Yazdanshenas and L. Moonen. Tracking and
visualizing information flow in component-based
systems. In Proceedings of International Conference
on Program Comprehension (ICPC’12), pages
143-152, 2012.

T. Ishio, S. Etsuda, and K. Inoue. A lightweight
visualization of interprocedural data-flow paths for
source code reading. In Proceedings of International
Conference on Program Comprehension (ICPC’12),
pages 37-46, 2012.

J. Triimper, J. Dollner, and A. Telea. Multiscale
visual comparison of execution traces. In Proceedings
of IEEE 21st International Conference on Program
Comprehension (ICPC’13), pages 53-62, 2013.

J. Maletic, D. Mosora, C. Newman, M. Collard,
A.Sutton, and B. Robinson. Mosaicode: Visualizing
large scale software: A tool demonstration. In
Proceedings of the 6th IEEE International Workshop
on Visualizing Software for Understanding and
Analysis, VISSOFT 2011, pages 1-4, 2011.

(39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

(47]

(48]

M. Stengel, Mathias Frisch, S. Apel, J. Feigenspan,

C. Kistner, and Raimund Dachselt. View infinity: A
zoomable interface for feature-oriented software
development. In Proceedings of International
Conference on Software Engineering (ICSE’11), pages
1031-1033, 2011.

N. Wilde, J.A. Gomez, T. Gust, and D. Strasburg.
Locating user functionality in old code. In Proceedings
of Conference on Software Maintenance, pages
200-205, 1992.

N. Wilde and M. Scully. Software reconnaissance:
Mapping program features to code. Journal of
Software Maintenance: Research and Practice,
7(1):49-62, 1995.

A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung.
An exploratory study of how developers seek, relate,
and collect relevant information during software
maintenance tasks. IEEE Transactions on Software
Engineering, 32(12):971-987, 2006.

P. Romero, B. du Boulay, R. Cox, R. Lutz, and

S. Bryant. Debugging strategies and tactics in a
multi-representation software environment.
International Journal of Man-Machine Studies,
65(12):992-1009, 2007.

D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart,

M. Burnett, B. John, R. Bellamy, and C. Swart.
Reactive information foraging: an empirical
investigation of theory-based recommender systems for
programmers. In Proceedings of Conference on Human
Factors in Computing Systems (CHI’12), pages
1471-1480, 2012.

E. Chi, P. Pirolli, K. Chen, and J. Pitkow. Using
information scent to model user information needs and
actions and the web. In Proceedings of Conference on
Human Factors in Computing Systems (CHI’01),
pages 490-497, 2001.

J. Spool, C. Perfetti, and D. Brittan. Designing for the
scent of information. User Interface Engineering, 2004.
L. Moreno, J. Aponte, G. Sridhara, A. Marcus,

L. Pollock, and K. Vijay-Shanker. Automatic
generation of natural language summaries for java
classes. In Proceedings of IEEE 21st International
Conference on Program Comprehension (ICPC’13),
pages 23-32, 2013.

N. Alhindawi, N. Dragan, M. Collard, and J. Maletic.
Improving feature location by enhancing source code
with stereotypes. In Proceedings of International
Conference on Software Maintenance, Findhoven
(ICSM’18), pages 300-309, 2013.

