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Abstract

This technical report presents the work done as part of the AutoSeer project, which investigated
the use of various generic invariants in the value and time domain, their effect on Spectrum-
based Fault Localization’s diagnostic precision, their relation with existing test oracles, and
their runtime overhead, in particular, the density required or strategic placement (trading off
overhead versus precision).

Our work in this project was to develop a source-to-source compiler, MANET, for the C
language that could be used for instrumentation of critical parts of applications under testing.
The intention was to guide the compilation flow and define instrumentation strategies using the
Aspect-Oriented Approach provided by LARA1. This allows a separation of the original target
application and the instrumentation secondary concerns.

One of the goals of this work was the development of a source-to-source C compiler that
modifies code according to an input strategy. These modifications could provide code trans-
formations that target performance and instrumentation for debugging, but in this work they
are used to inject code that collects information about the values that certain variables take
during runtime. This compiler is supported by an AOP approach that enables the definition
of instrumentation strategies. We decided to extend an existing source-to-source compiler, Ce-
tus, and couple it with LARA, an AOP language that is partially abstracted from the target
programming language.

We propose and evaluate an approach to detect faults in C programs by monitoring the range
values of variables. We consider various monitoring strategies and use two real-life applications,
the GZIP file compressor and ABS, a program provided by an industrial partner. The different
strategies were specified in LARA and automatically applied using MANET. The experimental
results show that our approach has potential but is hindered by not accounting for values in
arrays and control variables. We achieve prediction accuracies of around 54% for ABS and
83% for GZIP, when comparing our approach to a more traditional one, where the outputs are
compared to an expected result.

1LARA [5, 7, 9] is an Aspect-Oriented Programming language (AOP) specially designed for allowing de-
velopers to program code instrumentation strategies, to control the application of code transformations and
compiler optimizations, and to effectively control different tools in a toolchain. LARA provides a separation of
concerns, including non-functional requirements and strategies, for the mapping of high-level applications to high-
performance heterogeneous embedded systems. Moreover, LARA provides developers with artefacts and with
a unified view which diminishes the efforts to program and evaluate Design Space Exploration (DSE) schemes.
The research and development of the LARA language in the context of the FP7 REFLECT research project was
strongly driven by industry requirements (e.g., Honeywell, Coreworks, and ACE).



1 Introduction

This report presents the work done as part of the AutoSeer1 project. AutoSeer investigated
the use of various generic invariants in the value and time domain, their effect on Spectrum-
based Fault Localization’s diagnostic precision, their relation with existing test oracles, and
their runtime overhead, in particular, the density required or strategic placement (trading off
overhead versus precision).

More specifically, our work in this project was to develop a source-to-source compiler,
MANET, for the C language that could be used for instrumentation of critical parts of applica-
tions under testing. The intention was to guide the compilation flow and define instrumentation
strategies using the Aspect-Oriented Approach (AOP) [13] provided by LARA [5, 7]. This,
among other advantages, allows a clear separation of the original target application and the
secondary concerns represented by our source code instrumentation.

There were two main goals for this work. First, the development of a compiler that would
take applications written in the C language and output modified C code according to an input
strategy. In theory, these modifications could provide code transformations that target perfor-
mance and instrumentation for debugging. In this work, this compiler is used to inject code
that collects information about the values that certain variables take during runtime. This com-
piler supported by an AOP approach that enables the definition of instrumentation strategies,
for instance, in our case, deciding which variables to monitor and how to collect and use this
information. We decided to extend an existing source-to-source compiler, Cetus [8], and couple
it with LARA [5, 7], an AOP language that is partially abstracted from the target programming
language.

A source-to-source compiler framework controlled by LARA strategies provides important
advantages over code instrumentation alternatives. Previous uses of LARA, namely in the
context of source-to-source transformations and instrumentations strategies (see, e.g., the ver-
sion of the Harmonic [16] source-to-source framework controlled by LARA [9]), have already
highlighted and exposed strong evidence of its advantages [7]. There are possibilities such as
manually instrumenting the source code but that has obvious downsides as it is time-costly
and error-prone. Other approaches include binary instrumentation which can be less flexible
and also more complex. There is also the possibility of extending existing compilers. However,
per each instrumentation strategy we wanted to apply, a new compiler pass would have to be
written. This is usually out of the scope and skills of users that need to instrument applications.
All of these alternative approaches hinder the possibility of exploring different strategies, which
is of utmost importance, especially in the early stages of a project.

The second goal was the development and the evaluation of instrumentation strategies that
could be used to detect faults present in a given application. Our compiler, coupled with LARA
allows a great flexibility in the type of instrumentation that is possible. We can, with fine-grain

1For more information on the AutoSeer project, please refer to: http://autoseer.fe.up.pt/
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control, select and act over a multitude of points of interest. For instance, it is possible to
develop strategies that test program paths by instrumenting control-flow statements. For this
particular work, we explored the possibility of using the range taken by certain variables during
the execution, so all strategies revolve around this idea. We change the sets of variables chosen
for monitoring for a particular program.

The computing of the range of values (known as range-value analysis) has been addressed
since many years [3]. Approaches may rely in static analysis, monitoring, and a mix of both.
Range-value analysis has been used in the context of compiler and hardware synthesis opti-
mizations for reducing the bitwidths of variables, see, e.g, a static approach [23], and, e.g., a
monitoring approach using simulation [4]. Research efforts also consider range-value analysis
in the context of detecting program faults. For instance, in the context of fault screeners, the
range of a variable is used to identify collar variables [20]. They consider that if the range is
constant across executions, then the variable should not monitored. With this approach they
reduced by about 50% the number of variables to monitor for the 3 applications considered.
Research efforts in the context of security vulnerabilities, have also used range value analysis to
detect program faults (e.g., buffer overflows [21, 24]).

Using program invariants as mean to locate faults is already a proven approach [1, 2]. Al-
though we decided to use ranges taken by variables, there are other approaches that focus on
using other types of program invariants, which may prove more beneficial in different contexts.
Daikon [11] is a platform for dynamic invariant detection. It runs a program and finds likely
invariants such as constants and ranges. It supports multiple programming languages and can
be extended by the user to detect new invariant types. Zoltar [14] is a toolset for automatic
fault localization that instruments application-specific fault screeners. Zoltar provides, by de-
fault two Spectrum-based Fault Location techniques but can be extended easily. There are also
approached that work on the hardware level. IODINE [12] is a tool that captures properties
from hardware design simulations that can be used as dynamic invariants. These properties
include state machine protocols and request-acknowledge pairs. iSWAT [19] is a framework for
detection of permanent faults at the hardware level that aims to reduce the latency and increase
the coverage of previous techniques. Compile-time instrumentation is used to monitor values
during training and generate the invariants. Code insertion is then used to inject the invariants
used at runtime.s

We decided to monitor variables with the purpose of detecting faults as they are integral
part of the computation of any application and, as such, we can expect faults to eventually
propagate to a variable. It is also straightforward to monitor them, in the sense that it is
easy to locate the sites in the code where they are updated. This however, brings the obvious
downside that we will, by default, monitor a large number of places. Therefore, choosing the
most critical variables becomes the main issue, as the so called collar variables [17] may not
be easily identifiable. Finally, it is simple to monitor the range of values that a variable takes
during execution, as we need to maintain only, for each monitored variable, a the minimum
and the maximum values. This is not to say that for a large number of variables, this will not
be computationally expensive or require too much memory, which can be a problem in certain
computing systems.

The approach using ranges is defined as follows. Initially, we have a training phase in which
we execute the application using several test cases, trying to exercise all of its modules and
features. When we do this, and using our instrumentation, we learn a range for each variable,
in each function. This is basically the minimum and maximum values that the variable took
during execution in the training phase. Then, during the execution or testing phase, we execute
the same application using similar instrumentation to detect if any of the learned ranges was
violated. That is, if a given variable took a value that was either lesser than the minimum or
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greater than the maximum learned in the training phase. This detection could also be performed
online, on a deployed application, which would trigger whatever fault tolerance measures were in
place. For our work, however, this range violation is tested offline as we only intend to measure
the diagnostic accuracy of this technique.

In order to evaluate this approach we used two different applications. First, we used one
of the original versions of the GZIP2 application, which is found in Linux distributions. This
program can be used to compress and decompress files which are then typically archived. The
second application is a simulation of an Anti-lock Breaking System (ABS)3 that will, given the
initial car and wheel speeds, calculate the distance needed to stop the car.

The remainder of this report is structured as follows. Chapter 2 briefly presents the LARA
language and details the architecture of MANET, our source-to-source compiler that is supported
by LARA. In Chapter 3, we explain our approach to detect application faults using range values,
as well as the monitoring strategies developed and evaluated in this work. The description and
results of the conducted experiments are shown in Chapter 4. Finally, Chapter 5 presents the
conclusions drawn from this work as well as some possible paths for future research.

2The application source code and test cases for GZIP were provided by the Software-artifact Infrastructure
Repository: http://sir.unl.edu/portal/bios/tcas.php.

3The application source code for ABS was gently provided by our industrial partner, Critical Software:
www.criticalsoftware.com.

3

http://sir.unl.edu/portal/bios/tcas.php


2 Source-to-Source Compiler

In this chapter, we briefly present the LARA language and it is used with our compiler, MANET.
Then, we detail the architecture of MANET and the compilation flow that is used to weave a
LARA strategy with an application written in C. We also present some of the transformation
engines that are used in this work and illustrate how the framework can be used with simple
examples.

2.1 The LARA Language

Although all programming paradigms have their decomposing criteria (e.g., function decomposi-
tion or objection-oriented decomposition), there are concerns that do not align with the primary
decomposition [13]. These secondary or cross-cutting concerns, are spread along the program
decomposition unit, usually repeated and scattered along the source code, polluting the primary
objective of the system [10].

Aspect Oriented Programming (AOP) [13] is a paradigm which intends to increase the mod-
ularity of programs, by separating cross-cutting concerns from those that describe the intended
behavior of the application [10]. This paradigm is based on the idea that a system works better
if its properties, non-functional requirements and areas of interest are specified separately and
there is an aspect describing the relationships between them. The weaving process will then
bring these concerns together into the intended program [10]. Using aspects to separate sec-
ondary concerns from the core objective of the program results in cleaner code, easier concern
analysis, monitoring, tracing and debugging.

Currently, there is a diverse set of aspect programming languages, such as AspectJ [15], an
aspect-oriented extension for Java, and AspectC++ [22], to apply aspects in C++ programs.

The previously mentioned AOP languages define specific aspects, which cannot be reused
across different aspect and target languages. For instance, an extensive aspect defined in As-
pectJ, possibly useful for Java, cannot be immediately used with other languages without manual
translation. Other disadvantages of the mentioned tools include their simple model for points
of interest (that, e.g., does not consider loops and local variables) and the reduced number of
available actions, usually restricted to code insertion.

LARA [5, 7] is an AOP approach that is partially agnostic to the target programming
language. It allows the definition of aspects for different target languages, i.e., LARA aspects
are generic enough so they can be applied to several problems, over a number of (specified)
languages. LARA enables developers to capture non-functional requirements and concerns in
the form of strategies, which are completely decoupled from the functional description of the
application [5, 6].

LARA differs from other AOP approaches as its syntax is agnostic to the contents of the
target language. Instead it relies on a external language definition which contains three generic
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components, namely, join points, attributes and actions. The join points, are points of interest
in the code that one intends to observe or influence, e.g., function calls or array accesses.
Attributes, represent join point information that we can retrieve, for instance, the name of the
called function. Activities one can carry out over the selected join point, such as monitoring
code insertion, are called actions. LARA provides access to several types of actions, compared to
current state-of-art approaches, that usually focus on code injection (e.g., [15] and [22]). Besides
allowing code insertion, LARA enables attribute definition of a specified join point to a new
intended value, such as variable type redefinition and function renaming. Moreover, additional
types of available actions may be defined in the language specification, such as optimizing tasks,
software/hardware partitioning, and code transformations.

With LARA, the language specification is defined externally, as opposed to other common
approaches. This allows flexibility for new updates and to easily target different programming
languages. As a consequence, LARA does not have a built-in weaving process. Instead, the
LARA Compiler parses the aspects and combines them with the language specification to gen-
erate the Aspect-IR, an intermediate representation of the aspects for a specific target language.
The Aspect-IR should then be interpreted by an external interpreter or weaving tool, such as
LARAI [6], the LARA Interpreter. LARA remains partially language-agnostic, as it is the
weaving tool that is bound to a specific target language.

A concern intended to be applied over the target application, is expressed as an aspect
definition, or aspectdef, the basic modular unit of LARA. An aspect is comprised of three main
steps, which will carry out the intended concern. First, we need to capture the points of interest
in the code using a select statement. Now, using the apply statement, we are able to act over the
select points, if certain concern constrains are met. These represent the last required step, and
can be defined as a filter inside the select statement for simple constrains, or using a condition
statement if they are more complex. To allow the definition of more sophisticated concerns, it
is possible to embed JavaScript code inside LARA aspects.

a spe c tde f Loop I t e ra t i on s

var id = 0 ;
s e l e c t loop . f i r s t s t m t end
apply

$loop . i n s e r t be f o r e ’ i n t counte r [ [ id ] ] = 0 ; ’ ;
$ loop . i n s e r t a f t e r

’ p r i n t f (” loop [ [ $ loop . rank ] ] : % d\n” , counte r [ [ id ] ] ) ; ’ ;
$ f i r s t s t m t . i n s e r t be f o r e ’ counte r [ [ id ] ] + + ; ’ ;
id++;

end
cond i t i on $loop . type == ’ for ’ end

end

Figure 2.1: Simple LARA aspect that counts and prints the number of iterations of a loop.

Figure 2.1 shows an example aspect written in LARA that inserts code around loops to
count the number of iterations at runtime. The aspect starts by selecting loops and their first
statement (line 3). Then, we insert code before the loop to initialize a counter variable, unique
to the loop. We insert a call to print the number of iterations after the loop. Finally, we add an
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increment statement at the beginning of the loop body, i.e., before the first statement. These
code insertion actions appear in lines 5 through 12, and are only applied if the condition in line
13, which states the loop must be of type FOR, is met.

2.2 MANET: Extending Cetus with LARA

Our solution is MANET, a source-to-source compiler for C, that is controlled through an AOP
approach, using LARA aspects. This compiler manages to leverage the expressiveness and
modularity of LARA aspects, to control the query and manipulation of an Abstract Syntax
Tree (AST) of an existing compiler infrastructure, Cetus [8]. This creates an easy compilation
process of C source files with the main goal of code instrumentation. The usage of aspects enables
an easy selection of points of interest in the code, represented by LARA join points, which can
then be analyzed for information retrieval or transformed through actions. Thus, MANET can
be used to create information reports based on compiler analyses or to implement complex
and sophisticated code instrumentation and transformation strategies. MANET makes use of
two already existing and tested platforms, LARA, the aspect-oriented DSL used to control the
compilation flow, and Cetus used as both intermediate representation and back-end component.
We believe that using two already proved and tested platforms brings value and robustness to
the solution.

As a source-to-source compiler, MANET is intended to be used as an intermediate tool,
part of a more complex toolchain, rather than as a standalone compiler. This usage is per-
fectly illustrated in [18], where MANET is used to transform source code as part of a Design
Space Exploration mechanism that aims to increase performance on specific kernels using dif-
ferent multicore models. Despite being in its early stages of development, we believe MANET
is a flexible source-to-source compiler suitable for a variety of tasks, such as code instrumenta-
tion, code transformations and optimizations and even as an alternative to multi-architecture,
directive-based compilation.

The MANET compilation flow is guided by LARA aspects that describe the intended strate-
gies. As an example, consider the aspects depicted in Figure 2.2. In PrintLoopIterations, we
print to the console the number of iterations each loop is going to execute. The loops are iden-
tified by their rank attribute, which uniquely identifies a loop inside a source file. This aspect
shows the most basic LARA construct, a select followed by an apply. The former is used to
capture points of interest in the source code, loops in this example, and the later is used to act
over these points. The InstrumentFunctionCalls aspect inserts monitoring code (line 13) that
will print a message with the called functions and their caller. Finally, there is an example of
a LARA-controlled loop transformation in the aspect UnrollLoopsBy2. This aspect captures
innermost FOR loops and transforms them with Loop Unrolling.

2.2.1 MANET Architecture

MANET is composed of three main components, which are presented in Figure 2.3. The first
component is the LARA Engine, that provides the interface to the user and translates the aspects
into commands for the next component. The Weaving Engine is responsible for establishing
communication between the other two components. The commands from the LARA Engine are
converted into specific actions that are applied over Cetus, which builds and maintains the AST
after parsing the input C source files. Each of these components is detailed below.
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a spec tde f Pr in tLoop I t e ra t i on s
s e l e c t loop end
apply

p r i n t l n ( $ loop . rank + ” :” + $loop . num i te ra t i ons ) ;
end

end

a spec tde f InstrumentFunct ionCal l s
s e l e c t func t i on . c a l l end
apply

var func = $ funct i on . name ;
var f c a l l = $ c a l l . name ;
i n s e r t a f t e r ’ p r i n t f ( ” [ [ func ] ]−> [ [ f c a l l ] ] ” ) ; ’ ;

end
end

a spec tde f UnrollLoopsBy2
input funcName end
s e l e c t func t i on {name==funcName } . loop { type==”f o r ”} end
apply

perform Unro l l ( 2 ) ;
end
cond i t i on $loop . i s i n n e r m o s t end

end

Figure 2.2: Simple examples of LARA aspects that illustrate how MANET performs different
tasks, such as code instrumentation or transformation.

LARA Engine

The LARA Engine is the component where the execution starts and is itself composed of two
subcomponents. The first, is the LARA Compiler, which is responsible for compiling the aspect
into an intermediate representation, known as Aspect-IR. Because LARA is partially language-
agnostic, it also needs as input a description of the target language. This is the C Lang. Specs
block in Figure 2.3, a set of three XML files (part of MANET) that contain the specification of
the language: join points, attributes and actions. The generated Aspect-IR is saved to an XML
file and passed to the LARA Interpreter, the second subcomponent. This is step 1© in Figure
2.3.

In step 2© of the compilation flow, the interpreter takes this new representation and commu-
nicates with the Weaving Engine the instructions that it needs to carry, i.e, join point selections,
attribute queries or program-altering actions. There is an iterative information flow that goes
from the LARA Interpreter, to the Weaving Engine 2©, to Cetus 3© and then back again to the
interpreter through the reverse path, 4© and 5©. The information flows forward in the form of
commands to the Weaving Engine and flows backwards in the form of join points or attributes.
This process repeats several times during a normal execution.

The LARA Engine provides the interface with the user, as it is the component responsible
for parsing the LARA aspects and initiate the execution, as well as printing the information to
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Figure 2.3: The architecture of MANET.

the console, as in the aspect PrintLoopIterations of Figure 2.2.

Cetus

Cetus is a source-to-source compiler infrastructure for the C language, that supports the ANSI C
standard and is written in Java. This is an infrastructure aimed towards research on multicore
computing with a focus on auto-parallelization. Current work [8] tries to translate shared
memory programs written in OpenMP, into other models, such as Cuda. This is supported by
several transformation and analysis passes, such as Control Flow and Data Dependence Analysis.

The AST, the main element of Cetus regarding MANET, represents the C program and
is composed of Java classes such as Program, Translation Unit, Procedure, Statement and
Expression. These are the basic building blocks of the C hierarchy. All these elements are used
as nodes of the AST and can be visited during tree traversals. During these traversals it is
possible to manipulate the nodes, effectively changing the resulting C program.

Any join point that is created during the execution is based on this AST and has a reference
to the specific node it represents, e.g., a CFunction has a reference to a Procedure on the AST.
Whenever there is a query about a join point attribute, a method is triggered that uses the tree
reference to return the requested information. Analogously, when an action is to be performed
that alters the AST, a method of the join point is called that uses the tree reference to perform
the desired changes.

Weaving Engine

The Weaving Engine is the central component of MANET. It provides a bidirectional communi-
cation channel between the other two components and is responsible for instantiating the intents
described in the LARA aspect by either querying or changing the AST on Cetus.

This engine has a hierarchic structure that mimics the join point tree defined in the language
specification. If the join point model defines that it is possible to select loops from inside a
function, then there is a class, CFunction, from which it is possible to select instances of another
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class, CLoop. Similarly, this structure also follows the language specification regarding the join
point attributes, as each class implements getter methods for specific attributes. For instance,
CLoop has a getNumIterations() method, as the language specification defines that it is possible
to consult the number of iterations of a loop join point.

The actions defined in the language specification are performed by the Weaving Engine by
interacting with the AST created by Cetus. This is performed using extensions to the Cetus
infrastructure, represented by the Analysis Engines and Transformation Engines in Figure 2.3.
For instance, NormalizeReturn is a transformation pass that, among other things, changes the
program structure so that every function has at least one return statement. This is a transfor-
mation that exists on Cetus and was adapted to be called from a LARA aspect. Consider also
UnaryExpansion, that transforms expressions that use unary increment or decrement operators
into their equivalent binary expressions. This transformation pass was written for MANET, as
it facilitates code analysis and instrumentation.

Join points and the AST

There is a logical match between the join points used by the LARA Engine and the AST built
by Cetus. Although this is not how it is actually implemented, as there is no join point tree
at any time during execution, it is the most intuitive way of thinking about the relation of
both representations. For instance, there is a correspondence between a TranslationUnit and a
CFile join point as both represent a C source file. With rare exceptions, mainly implementation
related, there is a direct, one-to-one mapping from a join point to a node on the AST. Thus,
we can think of having two trees that can be translated into one another, creating a simple, yet
effective and intuitive representation of the program information, as portrayed in Figure 2.4.

In actuality, only the AST exists and the join points are extracted as needed. This is an
implementation choice, taken because we want to keep the tree updated with the changes that
are applied, so that any change on the tree is immediately seen by the following information
queries. Consequently, it is simpler to keep a single tree, halving the updates and avoiding
synchronization tasks. As expected, this choice comes with its own disadvantages, namely,
having to create unnecessary join points. Picture an aspect that does not perform any change
on the tree and is used only to collect information. In this case, certain join points are created
repeatedly when there is no need to. Ideally, MANET would analyze the LARA aspect to check
whether it contains tree-altering actions and, based on this information, select one of the two
representations. This, however, might not be possible due to the highly dynamic nature of
LARA.

2.2.2 Transformation Engines

MANET currently provides a number of transformation engines that can be invoked by any
LARA aspect. Those engines have mainly two different goals. Some can be used to transform
the code so that it is easier to analyze and instrument, e.g., ensuring that every function as one
return statement, providing a well known exit point. Other engines change the code by applying
well-known transformations that usually improve performance. Table 2.1 presents the current
transformation engines that were used in the strategies developed for this work. The Origin
column indicates whether the transformation was already available with the Cetus distribution1

or if it was specifically developed for MANET. The transformations available in Cetus were
adapted in order to be called from within LARA aspects.

1More information at: http://cetus.ecn.purdue.edu/Documentation/api/
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Figure 2.4: The mapping between the join point tree and the AST created by Cetus.

NormalizeReturn Guarantees that every function has at least one return statement. Addi-
tionally, it changes existing return statements so that they have their return expressions replaced
with a single temporary variable, whose value is the previous return expression.

SingleDeclarator If there is a declaration statement with multiple declarations, it is divided
into multiple statements, each containing a single declaration.

AssignExpansion Augmented assignments, such as +=, are replaced with normal assign-
ments, replicating the left hand side in the right side.

StructAssignDecomposition Replaces the right hand side expression of an assignment to a
struct member with a single temporary variable. This variable contains the value of the previous

Engine Origin

NormalizeReturn Cetus
SingleDeclarator Cetus
AssignExpansion MANET
StructAssignDecomposition MANET
UnaryExpansion MANET

Table 2.1: The transformation engines used in this work.
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right hand side expression.

UnaryExpansion Expressions with unary increment and decrement operators are replaced
with the equivalent assignment expressions. This only happens if the expression is, by itself,a
single statement, i.e., this transformation is not performed if the unary operation is used as part
of a more complex expression.

2.3 Summary

In this chapter we gave an overview of the LARA language and its main concepts (join points,
attributes and actions) and its main constructs (select, apply and condition blocks). Then,
we presented a detailed view of MANET, explaining how we extended the Cetus compiler and
added LARA support to control the compilation tasks. There are three main components,
the LARA Engine, the Weaving Engine and the extended Cetus compiler. These interact to
compile the C source files according to the defined strategies. The LARA engine compiles and
interprets the LARA aspects and communicates their intentions to the Weaving Engine. This
engine will translate these intentions to specific actions that are applied on the internal program
representation, the AST of Cetus. Cetus makes use of the developed transformation and analysis
passes to change the program and send information back to the Weaving Engine.
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3 Monitoring Strategies

We consider different strategies for monitoring the range values of variables. Table 3.1 sum-
marizes the strategies that are detailed in the following sections. The LARA code for these
strategies can be found in Appendix A.

3.1 Fault Detection Using Range Values

The process through which we can detect a fault can be divided into two subprocesses. First,
during the training subprocess, we learn ranges for each of the relevant variables on the appli-
cation. Then, during the execution subprocess, and when the value of a variable changes, we
can check if the range of that variable is violated, raising an exception and acting accordingly if
needed. These two subprocesses are described with more detailed in the following sections.

3.1.1 Training

During this training process, we capture the ranges of function parameters, return values and
variable assignments that are considered relevant. We do this, for each variable, M times, where
M is the number of training executions. During each of these executions, we try to exercise a
different part of the application. We do this, as learning a range from a single execution would
severely constrain our ability to detect faults and lead to a very low detection accuracy. Using
several ranges for the same variable, all resulting from different executions, allows us to relax
the learned range and have a better representation of the global use of a variable inside the
application.

The final product of this training phase is a set of ranges for each variable, for each of the
examples executed. For instance, if we were to monitor 5 variables and perform 100 training
executions, we would have 5× 100 = 500 ranges.

3.1.2 Execution

The idea behind the this subprocess is simple, we simply check if the value assigned to a variable
during execution violates the range that we learned for that variable. In order to calculate the
final range of a variable, we simply choose from all the learned ranges some percentage and
merge them. This percentage can represent a single test, in which case we will have a single
random training execution giving the variable range, or it can represent 100% of these ranges
and we will have the final range as relaxed as possible.

The two subprocesses are exemplified, for a single variable named factor out of N variables,
on Figure 3.1. In this example, we consider M training executions, and choose 50% of the ranges
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Table 3.1: A summary of the strategies used in this work. The last two columns indicate on
which applications they were used.

Strategy Description

ASCV3 Monitors function parameters, assignments and return values
ASCV3 s Similar to ASCV3, but deals with assignments to struct fields
FREQ Monitors variables with a certain percentage of the total assignments
FANIN Monitors variables whose assignments use a certain number of variables
COMBAND Intersection of the variable sets from FREQ and FANIN
COMBOR Union of the variable sets from FREQ and FANIN

learned during those executions at random. These are used to calculate a relaxed range for the
variable factor.

[0 - 3.5]

[0 - 3.5]

[0 - 5]

[-1 - 4]

[0 - 3.5]

[7 - 9.5]

[0 - 3.5]

[0 - 11]

factor

[0 - 3.5]

[0 - 3.5]

[0 - 5]

[-1 - 4]

[0 - 3.5]

[7 - 9.5]

[0 - 3.5]

[0 - 11]

[-1 - 5]

Select, at random, a percentage of all the 
learned ranges and combine them. We 
chose 50% in this example.

T0

TM-1

V0

VN-1

Figure 3.1: An example of the two subprocesses for a single variable. We perform M training
executions and choose 50% of the resulting ranges to calculate the final range of the variable
named factor.

3.2 Main Strategy, Data Structures and Libraries

The idea of the strategies described below is to use an array that can keep track of the range of
every variable that we want to monitor. Each position on the array corresponds to a variable
and the index of this position is calculated using only static information, during weaving time.
This array contains pointers to structures that are able to save the range of a variable, as is
depicted in Figure 3.2. In practice, all we need is a minimum value and a maximum value
and a way to update the range given a new value for a variable. This update is performed
by the function update_range(Range* range, double value), part of a library developed to
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keep track of variable ranges during the instrumentation process. When we want to monitor a
variable, we insert a call to the update function and give it the correct position on the array and
the new value. The following example illustrates the an excerpt of the code that results from
the instrumentation:

a = b * c;

update_range(&ranges[32], (double) a);

The index of the array, 32 in this example, is unique to the variable a on that particular
function, and, as such, it can identify that variable uniquely. This is the index that is calculated
at weaving time, using a JavaScript utility library provided with LARA. The value of the
variable is the second argument to the range update function and is casted to a double, the
broadest scalar type available. The update function will simply update either the minimum or
maximum value of the range struct with the value of a (it can also update both minimum and
maximum if this is the first update).

v0 v1 v2 v3 v4 ... vN-2 vN-1

min
2

MAX
53

min
7

MAX
9

Figure 3.2: A representation of the array that stores the minimum and maximum values fo each
monitored variable, considering N variables.

3.3 ASCV3

This strategy monitors function parameters, function return values and assignments to scalar
variables. In order to monitor function parameters we insert, before the first statement of each
function, a call to range update per qualified parameter (we avoid pointers and arrays). This
code is inserted right after the last declaration and it is the first code executed on the function.
We also monitor each variable that is used on the return expression of a return statement. So,
before each return statement of a given function, we insert a call to range update for every
variable that is used on the return expression, as such:

range_update(..., (double) a);

range_update(..., (double) b);

return a + b;

Finally, we monitor assignments to scalar variables, by calling range update after each as-
signment. There are two exceptions. We do not monitor assignments performed on loop headers
(e.g., the i=i+1 step expression) and we do not monitor assignments that are part of a con-
ditional statement. By monitoring all these variables, we ensure that we take a good look at
what is happening with each function, as we monitor its inputs and outputs, as well as most
computations that happen inside it.
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3.4 ASCV3 s

This strategy performs the same instrumentation on the code as the ASCV3. However, because
the previous strategy can not deal with assignments to struct member, it executes an additional
preprocessing step. We apply a source code transformation that replaces assignments to struct
members with equivalent code that is easier to instrument. The code:

struct->member = value;

is replaced with:

temp_struct_member = value;

struct->member = temp_struct_member;

which can be easily instrumented as follows:

temp_struct_member = value;

range_update(..., temp_struct_member);

struct->member = temp_struct_member;

This makes it possible to instrument the usage of structs, which accounts for a large part of
certain applications, using the previously defined strategy.

3.5 FREQ

Similar to the ASCV3 s strategy, but now, we only monitor variables whose assignments account
for a certain percentage of the total assignments. This strategy relies on a previous strategy that
instruments the code in order to create a frequency report. The report contains the total number
of assignments, as well as the number of assignments to each variable. With this information we
can calculate each variable’s share of the total assignments. This report is loaded and analyzed
by the main strategy, ASCV3 s, which chooses to monitor variables whose share is higher than
a given threshold. In this work we used the value 1% as the threshold value. In the following
example only the variables a and b would be chosen after their share was calculated:

a : 2.31%

b : 1.27%

c : 0.96%

d : 0.80%

...

g : 0.07%

3.6 FANIN

Like the FREQ strategy, FANIN also makes use of an auxiliary strategy to generate a report
that is used to choose only a subset of variables to monitor. This report contains, for each
variable in each function, the maximum number of variables used on all of its assignments. The
following code explains the fanin concept:
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// fanin(a) = 3

a = b + c + d;

// fanin(a) = 2, but the maximum, 3, is chosen

a = b + c;

// fanin(e) = 1

e = f + 0.1;

// fanin(g) = 1

g = func(h) + i;

The main strategy then selects variables that have a fanin higher than the input threshold,
which, in this case, was 2. This means that, in our example, variables e and g would not be
monitored.

3.7 COMBAND and COMBOR

COMBAND combines the previous strategies, performing an intersection of the resulting sets.
The resulting set contains the variables that will be instrumented.

Much like the previous strategy, COMBOR also combines FREQ and FANIN but performs
a union of the sets to produce the final set, the one that will be instrumented.

3.8 Injected Faults

The faults that were injected in the test versions of our example aaplications are based on the
concept of mutants and they try to mimic faults introduced by humans writing code, e.g., using
the operator = instead of ==. At any moment, only one fault is active.

3.8.1 GZIP

v1 The addition assignment operator (+ =) is replaced by a simple assignment operator (=).

#ifdef FAULTY_F_KL_6

header_bytes = 2*sizeof(long);

#else

header_bytes += 2*sizeof(long);

#endif

v2 This fault changes the operator ≤ for the operator ≥, effectivelly changing the decompres-
sion method.

#ifdef FAULTY_F_KL_1

if (compr_level >= 3) return deflate_fast();

#else

if (compr_level <= 3) return deflate_fast(); /* for speed */

#endif
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v3 If this fault is injected, the conditional expression is changed by removing the bitmask and
the comparison with 0.

#ifdef FAULTY_F_KL_5

if (start[17])

#else

if ((start[17] & 0xffff) != 0)

#endif

v4 When this fault is active the relational operator ≥ is replaced with ≤.

#ifdef FAULTY_F_KL_1

if (code <= 256) error("corrupt input.");

#else

if (code >= 256) error("corrupt input.");

#endif

v5 This fault changes the values a variable that holds an error code.

#define OK 0

#define ERROR 1

#define WARNING 2

/* ... */

#ifdef FAULTY_F_KL_2

int err = -1;

#else

int err = OK;

#endif

3.8.2 ABS

v1 This fault injects a logical negation operator (!), negating the conditional expression.

#ifdef FAULT_1

if (!(fac[j] < FACMIN))

#else

if (fac[j] < FACMIN)

#endif

v2 When this fault is injected, we repalced the constant assignment.

#ifdef FAULT_2

int_T nx = 1;

#else

int_T nx = 5;

#endif
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v3 The arithmetic operator / is replaced with −.

#ifdef FAULT_3

ztmp[i] = Delta[i]-hN;

#else

ztmp[i] = Delta[i]/hN;

#endif

v4 The comparison operator < is replaced with >.

#ifdef FAULT_4

localB->RelationalOperator1 = (*rtu_Input > 0.0);

#else

localB->RelationalOperator1 = (*rtu_Input < 0.0);

#endif

v5 When this fault is active the assignment statement is removed.

#ifdef FAULT_5

#else

localXdot->WheelSpeed_CSTATE = 0.0;

#endif

3.9 Summary

This chapter describes how we use range values to detect faults in programs written in C. There are two
phases to our approach. Initially, we perform training runs where we learn the minimum and maximum
value taken by each monitored variable on each of the runs. Then, we merge the ranges of a percentage
of the runs to create the final range values for the monitored variables. We are then able to check if an
assignment of a value violates the previously learned range.
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4 Experimental Results

In this chapter we demonstrate how we evaluated our approach. We used two applications and com-
pared the results obtained with our approach with those obtained through the traditional approach of
comparing the outputs of the applications. The first application is one of the first versions of GZIP,
used to compress and decompress files and commonly packed on several Linux distributions. The second
application is a Anti-lock Breaking System (ABS), which, given the initial velocities of the car and the
wheels, calculates the distance needed to stop the car.

4.1 Testing Process

The test process compares the fault matrices that are generated using a perfect oracle, i.e. an unchanged,
fault-free version of the application, with the fault matrices that are generated by our approach. A fault
matrix contains, for each test execution and version of program, a boolean value which indicates whether
the test is valid. An example of such a matrix can be seen in Figure 4.1.

v1 v2 · · · vN

t1 1 1 · · · 0
t2 0 1 · · · 1
...

...
...

. . .
...

tM 0 0 · · · 1

Figure 4.1: An example of a fault matrix, where a value of 1 represents a passed test. In this
example there are N versions and M test executions.

To generate the perfect oracle matrix, we take the original version of the application and run all the
tests. Then, we do the same for every version of the application with injected faults. In our case, there
were 5 versions with faults for both example applications. By comparing the outputs of each version
with the outputs of the original, we are able to build the fault matrix. If the outputs are the same then
a value 1 is assigned and a value of 0 if the outputs are different. For instance, using the example in
Figure 4.1, the output of the original version for the first test is equal to the output of versions 1 and 2
for the same test, while it is different from the output of version N (elements {1,1}, {1,2} and {1,N}).

In order to evaluate our approach, we also generate fault matrices but refrain from using the fault-
free version. Instead, we use the training and execution processes described in Section 3.1. We learn,
for each relevant variable according to our strategy, a range and verify if that range is violated. On a
deployed application this test could be performed online, as it is a simple assertion. In our case, for
each of the test executions, we generated a new range, which should be contained within the previously
learned range. The learned range can use any percentage of the ranges collected during the training
phase (we used 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%). For each element
of the matrix, i.e., for a test and a version, if the test range of any of the monitored variables is not
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contained on the learned range, the test is considered failed and a value of 0 is assigned. Otherwise, we
assume the test is valid and assign a value of 1.

The evaluation presented in this chapter compares, for both example applications, the fault matrices
generated from the perfect oracle with the matrices generated using our approach for several learning
percentages.

4.2 Results

The tables in this section represent the accuracy of each of the tested strategies. This accuracy represents
how similar the fault matrices generated by our testing process are to the fault matrix generated by the
usage of the perfect oracle. For instance if a fault matrix generated by our approach is completely equal
to the matrix generated from the original application we would have an accuracy of 100%. Conversely,
an accuracy of 0% would mean that the matrices are the complete opposite of each other, as they only
contain boolean values.

The tables presented in this section illustrate, for each of the tested strategies (described in Chapter
3), the best accuracy achieved and the corresponding learning percentage. If two different learning
percentages achieve the same accuracy, e.g. both 90% and 100% manage to achieve 65% accuracy, then
we show the smallest learning percentage as the best.

4.2.1 ABS Results

The tests performed on the ABS application show an overall low accuracy, as can be observed in Table
4.1. There is an upper bound around 54% accuracy which will be explained later. There isn’t a difference
between the top accuracies achieved by the different strategies, although we can consider FREQ as the
best strategy.

FREQ and COMBAND, which share some of the monitored variables are able to reach their best
detection accuracy using a smaller training percentage than the rest of the strategies. This means that
these strategies are able to find a set of key variables to monitor.

These results remain difficult to explain, since the FREQ and FANIN share only a small number of
variables and their best accuracy is identical. We believe that this may be related to the existence of a
large number of false positive results, which is presented ahead.

Table 4.1: Overall results for the ABS application.

Strategy Best Accuracy (%) Best Percentage

ASCV3 54.40 80
ASCV3 s 54.40 100
FREQ 54.93 10
FANIN 54.40 100
COMBAND 54.40 10
COMBOR 54.40 100

We can see, in Figure 4.2, the evolution of the number of correct predictions, false positives and
false negatives for each strategy and for each training percentage used on the ABS application. It is
evident that there is a large number of false positive results throughout the entire range of strategies
and percentages. The number of false negatives decreases as we increase the training percentage, which
is a trend that can be seen on all strategies. The percentage of correct results seems to increase slightly,
while the number of false positives remains almost unchanged. It is worth noting that the strategies
FREQ and COMBAND only present false negative results for the 5% training percentage, which are
eliminated when we train with at least 10% of the data.
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Figure 4.2: The percentage of correct predictions, false positives and false negatives for all the
tested training percentages for the ABS application.
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The test results per version for the ABS application are shown in Table 4.2. Versions two and five
have poor results, achieving a top accuracy that ranges from 2.4% to a maximum of 12.27%. These
results were obtained with only 5% usage of the training data.

The fault injected in the second version changes the initialization of a variable that is immediately
used to perform two memcpy function calls, as the number of bytes to copy. Because the fault reduces
the number from 5 to 1, the number of copied bytes is smaller and we are left with two arrays with
uninitialized positions. Furthermore, this variable is also used as the upper bound of a FOR loop that
initializes a third array through pointer increments. Because our current strategies do not monitor the
values inside arrays, we fail to capture this change with our approach. We tried, however to monitor the
control variable of this loops, by using a strategy that monitors loop control variables before and after
the execution of loops. Any value that this variable takes inside the loop body may not be captured.
The results were not better then those already obtained with the other strategies. We achieved a top
accuracy of 54.4% when using 90% of the training data.

The poor accuracy of the fifth version may also be explained by the type of fault that was injected.
This fault removes an assignment to a variable that is used to calculate an internal derivative for a
representation of the speed of a wheel. This directly affects one of the outputs of the program, meaning
that it is easy to detect when simply comparing the outputs of the original and mutant versions.
However, this fault changes only a very reduced number of variables inside the program (which may
not even be monitored, if they are arrays or pointers), hampering our ability to detect it with our range
approach.

We achieve good accuracy on the first version for all the strategies. Although this is good, we
expected a larger difference from the first strategy to the second, since the later monitors more than
the double of variables than the former (which can be seen in Table 4.6). Finally, we achieve perfect
results for versions three and four. This is achieved with a large percentage of training data, except for
the FREQ and FANIN strategies, which need only 10%.

Table 4.2: Per version results for the ABS application.

Best Accuracy (%) Best Percentage

Strategy v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

ASCV3 74.80 5.33 100 100 10.40 10 5 100 90 5
ASCV3 s 75.33 7.20 100 100 10.53 10 5 90 100 5
FREQ 72.00 4.53 100 100 12.27 10 5 10 10 5
FANIN 75.73 6.67 100 100 11.73 10 5 90 100 5
COMBAND 72.00 2.4 100 100 2.7 10 5 10 10 5
COMBOR 75.60 7.87 100 100 9.33 10 5 100 100 5

We performed one final test on this application. We changed the faulty value of the constant that
is redefined when the fault is active. So, instead of testing just the value 1, we tested some others. The
accuracy results are presented in Table 4.3. The only strategies presented are the ones where the change
had a noticeable impact.

Table 4.3: Accuracy results obtained when different faulty constant values are injected in the
second version. The original faulty value is highlighted.

Faulty Values

Strategy 1 0 -1 10 20

ASCV3 5.33 19.6 19.47 17.07 22.27
ASCV3 s 7.20 23.87 24.93 21.87 22.27

We can see that out of all the tested strategies, only 2 of them produced different results when the
constant value is changed. It is worth noting that FREQ, the best overall strategy for this application
and COMBOR, the best strategy for this version, failed to detect this change. This is likely due to the
fact that the first two strategies monitor a greater number of variables, including those whose range
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changes with this fault.
In the function where this fault is located, only a single variable is monitored and it is used to

hold a time instant. This variable however is not directly changed using the faulty variable. It changes
inside a loop that performs differently based on the faulty variable. This fault propagates and ends up
changing the value of the only function parameter, a pointer to a struct whose fields are updated inside
the function. Although the fault is located here, it is not detected with our ranges in this function. It
propagates and is detected somewhere else.

Boundary values, such as the tested 0 and -1, are likely to have a large impact on the control flow
of the program. The variable where the fault is injected is mainly used to control loops that initialize
and update arrays. This means that it is possible to completely skip the execution of certain blocks of
the application. The fact that larger values also produce more accurate results may be explained by the
type of application we are using. This is an program that relies heavily on numerical calculation and
certain control flow structures can be heavily affected by numerical values, for instance, when stopping
a calculation inside a loop if a certain value is above a predefined threshold. Because of the nature of
such programs, changing a variable like we do with that fault, can have an exponential propagation on
ranges and also control flow structures.

4.2.2 GZIP Results

Table 4.4 presents the overall the prediction accuracy for the GZIP application. This accuracy is good,
with every strategy correctly predicting around the 80% of the test results. The strategies FREQ and
COMBAND achieve the best accuracy and this last only needs to use 20% of the training data to achieve
it.

There doesn’t seem to be a very large difference between the ability of different strategies to detect
faults. Also, there isn’t much of a difference between the first two strategies, as including the assignments
to struct fields has an almost null effect on the number of monitored variables for the GZIP application
(as is shown in Table 4.7).

FANIN and COMBOR, although managing to achieve better performance than the first two strate-
gies, are worse than FREQ and COMBAND. It seems that FREQ finds a better set of variables to
monitor for this particular application. Moreover, the same happens with COMBAND, as it does not
use any variables that are not already included in FREQ.

Table 4.4: Overall results for the GZIP application.

Strategy Best Accuracy (%) Best Percentage

ASCV3 80.37 100
ASCV3 s 80.37 100
FREQ 83.18 100
FANIN 82.43 90
COMBAND 83.18 20
COMBOR 82.43 100

Figure 4.3 illustrates the evolution of the percentage of correct and incorrect predictions over the
used training percentages for each of the tested strategies on the GZIP application. The charts start at
60% to give a clearer indication of each of the percentages.

The ASCV3 and ASCV3 s follow similar patterns, starting with almost the same number of false
positives and false negatives. Then, as the percentage of used training data increases, the percentage of
correct predictions increases, the false negative becomes almost null and the false positive rate increases
slightly.

Although, at a training percentage of 100%, the FANIN strategy manages to achieve roughly the
same prediction accuracy as the FREQ strategy , the later is able to achieve for a smaller amount of
training data. This is an indication that the variables chosen by this strategy are better, as they at least
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Figure 4.3: The percentage of correct predictions, false positives and false negatives for all the
tested training percentages for the GZIP application.

require a smaller amount of training data, improving the quickness of our testing process. The same
happens with the last two strategies, COMBAND and COMBOR: COMBAND does not add variables
other than those used by FREQ, achieving the same early results and COMBOR adds the variables
from FANIN, which seem to dilute the effect of the variables selected by FREQ.

When looking at the different versions, shown in Table 4.5, the results are overall great with the
exception of version number two, where the highest accuracy achieved is 24.17% and all the strategies
achieve an accuracy between 21% and 24%.

The bad results on the second version of GZIP can be explained by the type of fault that was injected
(please see Section 3.8). This fault changes the compression method used to a faster one, that produces
a different output. The value change in this control variable will not impact a lot of other variables
inside the application code but will have a direct impact on the output, much like the case with the fifth
version of the ABS application. This means that when testing for the presence of a fault by comparing
the output we will easily detect this, but it becomes harder when using our range strategies.

For every version but the second one, the last four strategies are better than the first two, which
monitor a lot more variables. FREQ and COMBAND achieve the best results for every version except
the second. Again, FREQ selects a good set of variables, which is further limited when applying the
set intersection operation with the set from FANIN to generate the set from the COMBAND strategy.
COMBAND also separates itself from the other strategies because it manages to achieve roughly the
same accuracy but using a significantly smaller amount of training data. Once more, COMBOR seems
to have the effect of diluting the variables chosen by FREQ, although the difference in the prediction
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accuracy is small.
Similarly to what we did with the ABS application we tested a new strategy that augments the

best strategy and adds support to monitor loop control variables. Once more, the results obtained with
this strategy were on par with those already obtained. The top accuracy was 80.37% with 100% of the
training data.

Table 4.5: Per version results for the GZIP application.

Best Accuracy (%) Best Percentage

Strategy v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

ASCV3 92.99 23.27 96.73 97.20 96.26 100 5 100 100 100
ASCV3 s 92.99 24.17 96.73 97.20 96.26 100 5 100 100 100
FREQ 95.86 22.12 100 99.53 99.07 100 5 100 100 100
FANIN 95.33 21.42 99.07 99.53 98.13 50 5 50 90 100
COMBAND 96.26 21.14 100 99.53 99.07 5 5 20 20 20
COMBOR 95.33 22.73 99.07 99.53 98.13 100 5 100 100 100

4.2.3 Instrumentation Results

Tables 4.6 and 4.7 illustrate the number of join points that are instrumented for the ABS and GZIP
applications respectively. A join point is a point in the code that we may want to instrument. The tables
show the number of selected points, i.e., the those considered for instrumentation) and the number of
advised points (i.e., those that were actually instrumented).

One thing that is immediately clear is that this instrumentation would be a rather difficult task to
perform manually. Although, in some cases, we instrument a small set of variables, we always analyze
a large number. Going manually through each of these, would be not only be time-consuming, but also
error-prone. This is the case for every code transformation that is applied manually to more than a few
lines of code.

In the ABS application, the last version has less selected points because those are removed by the
injected fault (described in Section 3.8) that removes a statement from the application code. There is
a large difference in the number of selected and advised points between the first two strategies. The
second strategy, ASCV3 s, decomposes assignments to struct fields and this allows us to instrument these
assignments as if they were scalar variables. All the strategies that follow use this same transformation,
which results in a larger amount of monitored points, as the ABS application makes heavy use of structs
for its execution. On the other hand, we can see that, with GZIP, we only monitor one more variable
if we consider the usage of structs in the code. Hence, the last four strategies, just like the first one, do
not consider structs in the tests for this application.

Table 4.6: Number of advised and selected join points per version of the ABS application. The
columns labeled with A indicate advised join points while the columns labeled with S indicate
selected join points.

v1 v2 v3 v4 v5

Strategy A S A S A S A S A S

ASCV3 52 1340 52 1340 52 1340 52 1340 52 1339
ASCV3 s 129 1742 129 1742 129 1742 129 1742 129 1738
FREQ 33 1742 33 1742 33 1742 33 1742 33 1738
FANIN 21 1742 21 1742 21 1742 21 1742 21 1738
COMBAND 9 1742 9 1742 9 1742 9 1742 9 1738
COMBOR 45 1742 45 1742 45 1742 45 1742 45 1738

It is possible to see, in Table 4.8 and Table 4.9, the instrumentation times, in milliseconds, for the
ABS and GZIP versions. The ABS table contains only the single version where the five different faults
were injected. For this application, the instrumentation times vary between around 3 seconds and 4.8
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Table 4.7: Number of advised and selected join points per version of the GZIP application. The
columns labeled with A indicate advised join points while the columns labeled with S indicate
selected join points.

v1 v2 v3 v4 v5

Strategy A S A S A S A S A S

ASCV3 395 4627 482 5379 458 5009 461 5053 450 5212
ASCV3 s 396 4714 483 5466 459 5096 462 5140 451 5299
FREQ 24 4627 22 5379 22 5009 22 5053 22 5212
FANIN 48 4627 54 5379 50 5009 50 5053 51 5212
COMBAND 5 4627 5 5379 5 5009 5 5053 5 5212
COMBOR 67 4627 71 5379 67 5009 67 5053 68 5212

seconds. The instrumentation times are somewhat close, which might mean that most of this time is
related to the initialization of the Java Virtual Machine, as the weaving compiler, MANET, is a Java
application. The FREQ, FANIN, COMBAND and COMBOR strategies take longer as they need to
load reports and choose the variables that will be instrumented based on their contents. Although the
instrumentation times are longer, the same pattern can be seen for the GZIP application, in Table 4.9.
The longer times are explained because this is a much larger application. The fastest weaving took
around 4 seconds, while the longest took around 7 seconds.

Table 4.8: Instrumentation times for the ABS application.

Strategy Time (ms)

ASCV3 3067
ASCV3 s 3976
FREQ 4814
FANIN 4739
COMBAND 4717
COMBOR 4774

Table 4.9: Instrumentation times for the GZIP application.

Time (ms)

Strategy v1 v2 v3 v4 v5

ASCV3 3998 4694 4224 4286 4420
ASCV3 s 4035 4012 4297 4578 4885
FREQ 6356 6976 6659 6756 7065
FANIN 6257 7041 6624 6691 6992
COMBAND 6284 6979 6650 6790 7039
COMBOR 6292 7087 6777 6834 7035

Table 4.10 and Table 4.11 present the slowdowns of the instrumented versions of ABS and GZIP
respectively. In the ABS application (for which we make no distinction between versions) the slowdowns
range from 0.86 to 0.96, meaning that we get execution times close to the original, non-instrumented
version. Even though, in some strategies, we are monitoring a large number of variables, the slowdown
is still acceptable and the instrumented application runs in useful time. The same can be observed for
the GZIP application. The slowdowns range from 0.77 (for the ASCV3 s strategy on the first version)
to 0.91 (for the COMBAND strategy on the second version). One of the important features of any
instrumentation approach is the increase in the execution time of the instrumented application. Our
approach can collect the data needed for the analysis without even doubling this execution time.
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Table 4.10: Slowdown of the instrumented ABS application when compared to the original.

Strategy Slowdown

ASCV3 0.86
ASCV3 s 0.86
FREQ 0.89
FANIN 0.91
COMBAND 0.89
COMBOR 0.96

Table 4.11: Slowdown for each version of the instrumented GZIP application when compared
to the original.

Slowdown

Strategy v1 v2 v3 v4 v5

ASCV3 0.86 0.83 0.84 0.84 0.86
ASCV3 s 0.77 0.73 0.80 0.84 0.85
FREQ 0.86 0.86 0.85 0.84 0.85
FANIN 0.89 0.85 0.82 0.89 0.85
COMBAND 0.89 0.91 0.89 0.90 0.87
COMBOR 0.87 0.87 0.86 0.86 0.85

4.2.4 False Positives Analysis

In this section, several metrics are used. The next paragraphs explain their meaning and how they are
calculated.

tp: true positive count

fp: false positive count

tn: true negative count

fn: false negative count

ACC: Accuracy. The metric previously used.

PPV: Positive Predictive Value. The percentage of correct predictions where we say the test will pass.

Also known as Precision. It is calculated as: PPV =
tp

tp + fp

NPV: Negative Predictive Value. The percentage of correct predictions where we say the test will fail.

It is calculated as: NPV =
tn

tn + fn

TPR: True Positive Rate. The percentage of the positive instances that we manage to identify. Also

known as Recall. It is calculated as: TPR =
tp

tp + fn

TNR: True Negative Rate. The percentage of the negative instances that we manage to identify. It is

calculated as: TNR =
tn

fp + tn

Whenever the expressions negative prediction or positive predictions are used, we mean a prediction,
made by our approach, that the test will fail or pass respectively. They do not mean that the prediction
is incorrect or correct. The same applies for the expressions negative instance or positive instance. They
only mean that particular case is a failed or passed test in the original fault matrix.
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The fact that, for the v2 and v5 versions of ABS, the best results were obtained with the lowest
training percentage (5%), is due to the fact that anything above that has 0% accuracy. As we increase
the training percentage, we move farther away from the original fault matrix.

Hereupon, we decided to explore the hypothesis that our approach does not fit the code of the
ABS application. We assumed that the problem does not exist only on versions v2 and v5 (that show
the worst accuracy), but that it presents itself on every tested version. This could be explained if our
approach was simply passing every single one of the tests and producing a high number of false positive
results. The problem with detecting these false negatives arises when the original fault matrix has a
small number of failed tests, which is the case.

We decided to look at the original fault matrix from the ABS application. The cases with highest
number of false positive results are mainly in the second and fifth versions, which, according to the
original matrix, is where the largest number of failed tests occurs. If, as we hypothesized, our approach
was blindly passing all tests, then our accuracy should be similar to the percentage of passed tests in
the original fault matrix. We calculated this percentage for the ABS program and it has a value of 54%.
This result not only proves the hypothesis that our approach does not fit ABS, but it also explains the
54% upper bound limit that was previously presented in the results.

Table 4.12 presents the best accuracy achieve for each version of the ABS as well as the percentage
of passed tests in the original BAS fault matrix. Versions three and four have 100% accuracy and all
the tests pass for these versions. The opposite is seen for versions two and five. All the original tests fail
and the accuracy of our predictions is close to 0%. The results for these four versions can be explained
if our model is blindly passing tests and producing a large number of false positives.

Table 4.12: Percentage of passed tests in the original fault matrix for the ABS application,
compared to the best accuracy obtained in our predictions.

v1 v2 v3 v4 v5 overall

Best Percentage 75.73 7.87 100 100 12.27 54.93
Percentage of 1s 100 0 100 100 0 54.4

We present, in Table 4.13, for the best ABS strategy (FREQ), the values of the described metrics
for several training percentages.

Table 4.13: Several metrics collected for different training percentages of the best strategy for
the ABS application.

5 10 50 100

ACC 54.93 54.4 54.4 54.4
PPV 97.35 97.2 97.28 97.28
NPV 97.23 - - -
TPR 99.8 100 100 100
TNR 72.48 0 0 0

As seen before, the accuracy for this program is always around 54%. When we use 5% of the
executions as training data, we achieve very high values of PPV and NPV, which means that our
predictions, both positive and negative, are almost always correct. However, while we find most of the
positives tests (as shown by TPR), we fail to find a large portion of the negative tests (as shown by
the TNR value). As we increase the training percentage, the accuracy, PPV and TPR values remain
somewhat the same. TNR drops to 0% meaning that we don’t predict any of the negative tests in the
original fault matrix. Also, as the training percentage grows, NPV becomes impossible to calculate.
This happens because the denominator is the sum of all negative predictions (both false and true),
which becomes 0, as our approach stops making negative predictions after 5%.
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It seems that the same is happening with the GZIP application, although the effect isn’t as notice-
able. Table 4.14 presents, for each of the versions and overall, the best percentage obtained in the tests
(the upper row) and the percentage of positive tests in the original fault matrix (the bottom row).

Table 4.14: Percentage of passed tests in the original fault matrix for the GZIP application,
compared to the best accuracy obtained in our predictions.

v1 v2 v3 v4 v5 overall

Best Percentage 96.26 24.17 100 99.53 99.07 83.18
Percentage of 1s 95.33 20.09 99.07 98.60 98.13 82.24

These values are always quite similar, although the accuracy achieved with out predictions is higher,
which could mean that we can actually find negative tests for the GZIP application, as opposed to what
happens with ABS. We can see, in Table 4.15, for the best GZIP strategy, the values of the described
metrics for several training percentages.

Table 4.15: Several metrics collected for different training percentages of the best strategy for
the GZIP application.

5 10 50 100

ACC 81.95 82.63 82.90 83.18
PPV 99.32 99.32 99.32 99.32
NPV 96.00 97.90 98.82 100.00
TPR 99.94 99.97 99.99 100.00
TNR 67.69 66.31 64.69 62.50

The values of PPV and NPV are quite high, meaning that, when we make a predictions (either
positive or negative), we are confident it will be correct. As we increase the training percentage, the
number of negative predictions (tn + fn) decreases, but in a good way, as the false negatives decrease
more (even reaching 0) than the true negatives. The value of TPR is also quite high and even reaches
100%, which was expected. When most of our predictions are positive predictions, we will eventually
find all the positive test cases in the original fault matrix. On the other hand, TNR has a rather small
value, misclassifying around 40% of the negative examples (those were the original tests fail). TNR
decreases as the training percentage used increases, as the number of positive predictions also increases.

Once again, GZIP appears to have the same false positive problem that ABS shows, but at a smaller
scale. Even though we fail to correctly predict some of the negative instances (as highlighted by TNR),
when we make a negative prediction, we do so with a high degree of certainty (evidenced by NPV).

4.2.5 Overview and Analysis

Our approach seems to produce a large number of false positive results. The reason behind this behavior
is not clear at this time. One possibility is that the current process of comparing ranges may be too
permissive. This is something that should be looked into, especially considering that there is a big
difference on the rate of false positives between the two example applications. It may be possible, by
analyzing the different characteristics of the two applications, to identify the origin of this problem.

Although there is a difference between the accuracy of the presented strategies, this difference is
smaller than expected, especially in cases where the number of monitored variables greatly varies.
Generally speaking, the strategies FREQ and COMBAND seem to achieve roughly the same accuracy
as others, but manage to do it using a significantly smaller percentage of the training data. This could
be an important factor, as it would require a shorter time to perform our fault detection tests.

The first two strategies, which monitor function parameters, assignments to scalar variables and
function return values, may have redundant information that causes a degradation in our detection

29



accuracy. One could argue that the return value of a function depends on the assignments that occur
inside its body. If this is accepted, then we should only choose to monitor one or the other, but not
both. This concept obviously needs a more sophisticated approach.

The results for the ABS application are mixed, as there are faults that clearly were easier to detect
than others. Since the only difference in the versions is the injected faults, we can assume that it is the
type of the faults that deteriorates our ability to detect them. One of the injected faults has a direct
impact on the output of the program, but does not cause a dramatic change in the learned ranges. This
seems to be one weakness of our approach. Another weakness is exposed when a second fault causes
the values inside an array to change. We assume this could be detected if we were monitoring ranges of
array and pointer variables. However, this is not the case, as none of the tested strategies are prepared
to deal with these variables.

The results are overall positive for the GZIP application. The only problem arises when one of the
injected faults has the ability to drastically change the output of a program without causing major
changes on the ranges of the monitored variables. This is exactly what happens in the fault injected in
version two, where the compression method is changed when the fault is active.

Our approach seems to produce a considerable amount of false positive results for both applications
tested, although this is more noticeable in the ABS application. Nonetheless, whenever our application
makes a negative prediction (stating that the test has failed), it does so with high accuracy. The problem
is that there is still a large number of negative tests, found by traditional comparison methods, that
our approach incorrectly labels as positives tests.

We are not able to identify each and every variable whose range is critical to the diagnostic. This
was somewhat expected, as the main issue is still to find the critical or collar variables out of all the
variables that are used during the execution of an application. Although the instrumentation can be a
challenge and efficient techniques are required, the first and most important step, is to find what needs
to be instrumented.

Faults that cause and propagate errors and do not violate the learned ranges are not detected.
However, these faults can be triggered during execution and our approach is not capable of detecting
them. It is possible that, in a given execution context, even if a value is within the learned range, it can
cause unpredictable behavior that leads to an erroneous state. For instance, consider the second fault
injected in the GZIP application (which had the worst detection accuracy out of all the faults). This
fault changes the method used to compress the input data, producing a completely different output.
Suppose that a fault causes the value of the variable that holds the compression method to change.
Even if we learn the range for this variable (e.g., 1 through 9), such a change can lead to an error state
and unexpected output.

These types of control or operation mode variables are difficult to monitor through ranges, as they
are inherently discrete, meaning that ranges may be an unsuitable representation in the first place. In
addition to this problem, we still need to ensure that we exercise all of the operation modes during the
training phase. For these types of variables an approach using only ranges does not seem sufficient.
Nevertheless, this specific example, in which the compression method is changed, looks quite difficult to
detect even if other approaches were used. Here, even a simple change of the value of a single variable
can lead to a much different program output, even if the value is still within a well.defined range.

Our approach seems to have issues dealing with faults that drastically change the control flow of
the application as value ranges may not be the most suitable representation to deal with these types of
faults. However, this approach shows potential and we manage to achieve interesting and motivating
results in the GZIP application. We expected to find some difficulties when using this approach by itself.
It becomes obvious that it needs some refinement and that it would greatly benefit to be supported and
complemented by other approaches, such as approaches that take control flow into account.

4.3 Summary

In this chapter we presented the results of our experimental evaluation using two applications. We
compared the ability of our approach detecting faults to the more traditional method of comparing the
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outputs of the executions. We used two applications with different characteristics. The first is the GZIP
compressor and the other is an ABS simulation.

The results for the ABS application are mixed as we only achieve a top accuracy of around 54%
overall when considering all the tested faults. It is clear that some faults are easier to detect than
others, as we achieve perfect or near-perfect in some of the faults but have accuracies of around 13%
in others. One key feature that is missing from our strategies is array monitoring as some of the faults
seem to have a large impact on array values which we are not able to detect. Monitoring arrays will,
in principle, improve the achieved results. However, it maybe difficult to implement this as we need a
suitable strategy. For instance, in most cases, it would not be feasible to monitor every single position
of the array. One possibility would be to maintain a range for the entire array, but this may not be
accurate.

The results are better for the GZIP application as we manage to achieve an overall accuracy of
around 83%. The worst result for a single fault of GZIP highlights another key feature that is missing
in our approach, which is the ability to reliably monitor control variables. These commonly assume only
a small set of discrete values which are not well captured by our concept of range. In order to overcome
this limitation, we would need to possibly use our approach to complement others that may be better
suited to deal with this class fo variables.

Performing the analyses and transformations needed for our approach would prove to be massive
tasks if performed manually. Moreover it would more likely result in user-induced faults as the process
would be quite long and tedious. Our framework manages to analyze and act over a large number of
program critical points in a short amount of time. For ABS, we analyze at most 1742 points and act
over 129. These numbers become 5466 and 483 for the GZIP application. This is performed in only 5
and 7 seconds for ABS and GZIP respectively.

Finally, the instrumentation which is key to this approach results in slowdowns of around 0.86 for
ABS and 0.73 for GZIP. With a more sophisticated and careful choice of variables, this technique could
perhaps be used for online fault detection that could trigger fault-recovery policies.
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5 Conclusions

We started our work with the goal of developing a compiler capable of applying custom code instrumen-
tation strategies that could be used to detect the presence of faults within an application. We extended
an existing source-to-source compiler with analyses and transformations passes, as well as support for
the LARA language. This provides us with and Aspect-Oriented Programming approach that separates
the original application and the definition of the instrumentation strategies.

A source-to-source compiler extended with LARA language support provides great flexibility, as it
can be used for a multitude of different tasks such as source code analysis, optimizations and instrumen-
tation. There is a large number of possibilities for instrumentation as the compiler exposes fine-grain
selection of code structures that users can use to target very specific and critical code sections. Fur-
thermore, because this approach forces the separation of the original application and the specification
of strategies, we can rapidly test several different instrumentation possibilities without heavy changes
to the application.

Although the compiler can be used for several different tasks and instrumentation strategies (e.g.,
capturing control flow signatures), our focus was code instrumentation that could provide us with the
range of the values taken by specific, critical variables. During an initial training phase, we execute our
applications and try to exercise as many modules and features as possible. As a result, we learn, for
each of the monitored variables a range of values that were taken. Then, in the testing phase, when
a value is assigned to a variable, we check if it falls outside the learned range. When this happens we
consider that a fault was detected.

We evaluated our approach on two different applications, the GZIP compression utility and an ABS
simulator provided by our industrial partner. We tested different strategies which focused on choosing
distinct sets of variables to monitor. The results for the ABS application are mixed. We achieved an
overall accuracy of around 54% for he 5 different faults tested. For two of the versions we achieve
perfect accuracy while on two others, we don’t go beyond 13%. As seen, some of the faults are easier
to detected than others. For instance, if the fault leads to a change in the values of an array, we are
not able to pinpoint it on the array and rely on monitoring other variables, which may depend on the
array. This is one of the directions for future work, as at the present, there is no reliable way to test
the range of array variables.

As for the GZIP application, the results are positive and we obtain an overall accuracy of around
83% for the 5 different injected faults. With the exception of a single fault, all the tested strategies
produce good results with accuracies that are either perfect or close ot perfect. The only negative point
is the second fault, in which our approach only achieves around 22% accuracy. This seems to be one
of the weaknesses of this approach, capturing the meaning of control variables, which is difficult to do
with just a value range.

The number of source code points that are analyzed and instrumented means that a manual approach
is impractical, as it will require a big effort by the user and will, almost surely, results in a great time loss
and possible errors introduced in the code. In the ABS application, our strategies analyzed a maximum
of 1742 points in the code and acted over 129 of those. As for GZIP, our strategies analyzed a maximum
of 5466 code locations and inserted code at 483 of those. Clearly, this is an effort that is better suited
for an automatic approach such as ours, especially considering that these strategies execute much faster
than any user could if performing these tasks. The instrumentation process takes at most 5 seconds

32



for ABS and 7 seconds for GZIP. There is the obvious overhead of learning the LARA language and
developing the strategies, but the benefits still outweigh the disadvantages. Moreover, these overheads
will be reduced as more and more strategies are developed. It is also worth noting that the strategies
developed with the LARA language can be applied to other applications.

In the worst case, for the ABS application, there is a slowdown of 0.86. With GZIP, the worst
strategy causes a slowdown 0.73. These slowdowns account only for the execution time of the binaries
instrumented to collect the range information. Although there would still be the overhead of testing the
ranges to detect a fault, we believe it would be possible to use this approach as an online measure for
fault detection that could trigger proper fault recovery mechanisms. In order to do this, we need more
sophisticated strategies that can select only the most critical variables in the code. This would reduce
the number of online tests which, in turn, would provide better slowdowns.

Although the results show some instances where our approach mispredicts a considerable amount of
tests, it is clear that our infrastructure is able to implement custom instrumentation strategies capable
of providing fault detection diagnosis. In the future, new and more sophisticated strategies can be
implemented. These should enable better diagnostic accuracy for fault detection and location. Because
of this, we believe that there is clear room for improvement within our approach.

One of the negative features that stood out from the analysis on the experimental results, is that it
is quite difficult to detect faults that target control variables using just our approach. These variables
are responsible to direct the flow of the execution and to choose different operation modes. In practice,
these variables can take a value that is well within the learned range, but still produce an output that
is largely different from what is expected. We expected our approach to not detect every fault as well
as a manual approach, as it is quite difficult to monitor every variable of interest in the application. We
believe that one way to improve the diagnostic accuracy is to complement our approach with different,
already-proven techniques, such as a control flow analysis that could help with control variables. Another
interesting future study, would focus on finding which types of faults are detected by our approach but
not by others more commonly used. The support provided by MANET and LARA for specifying
monitoring strategies will be of great help in further experiments.
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A LARA Strategies Code

ASCV3

1 aspectdef AutoSeerCurrentv3
2

3 input
4 onlyPrimitives=true;
5 end
6

7 var laraObj = new LaraObject ();
8

9 call PrepareProgram ();
10 call InstrumentParameters(laraObj , onlyPrimitives);
11 call InstrumentWrites(laraObj , onlyPrimitives);
12 call InstrumentReturns(laraObj , onlyPrimitives);
13 call SetupInstrumentation(laraObj);
14 end
15

16 aspectdef PrepareProgram
17

18 select program end
19 apply
20 $program.SingleDeclarator ();
21 $program.AssignmentExpansion ();
22 $program.UnaryExpansion ();
23 $program.NormalizeReturn ();
24 end
25 end
26

27 aspectdef SetupInstrumentation
28

29 input
30 laraObject
31 end
32

33 var size = laraObject.getTotal ();
34

35 select function end
36 apply
37 insert before ’#include "range.h"’;
38 insert before ’Range __r_a[ [[size]] ];’;
39 break;
40 end
41

42 select function{"main"}. first_stmt end
43 apply
44 insert before ’range_init(__r_a , [[size ]]);\ natexit(print_ranges_to_file);’;
45 end
46

47 var PrintFunctionJS = function (laraObject) {
48

49 var code = ’\nFILE* file;\ ndouble inf = 1.0 / 0.0;\n’;
50 code += ’file = fopen ("./ output/range.mon", "w");\n\n’;
51

52 code += ’if(file == NULL){printf ("Could not open the output file .\\n"); return ;}\n\n’;

36



53

54 code += ’fprintf(file , "’ + size + ’\\n");\n’;
55

56 for(var type in laraObject) {
57

58 if(! laraObject.hasOwnProperty(type) || typeof laraObject[type] == ’function ’) {
59 continue;
60 }
61

62 code += ’fprintf(file , "t#’ + type + ’\\n");\n’;
63

64 for(var func in laraObject[type]){
65

66 code += ’fprintf(file , "f#’ + func + ’\\n");\n’;
67

68 for (var vari in laraObject[type][func]) {
69

70 code += ’if(__r_a[’ + laraObject[type][func][vari] + ’].min != 1./0.) {\n’;
71 code += ’fprintf(file , "v#’ + vari + ’#’ + laraObject[type][func][vari] + ’");\n’;
72

73 code += ’fprintf(file , "#%.2f#%.2f\\n", __r_a[’ + laraObject[type][func][vari] + ’
].min , __r_a[’ + laraObject[type][func][vari] + ’].max);\n}\n’;

74

75 }
76 }
77 }
78

79 code += ’\nfclose(file);\n’;
80

81 return code;
82 };
83 var code = PrintFunctionJS(laraObject);
84

85 select function{"main"} end
86 apply
87 insert before ’void print_ranges_to_file () {\n[[code ]]}’;
88 end
89 end
90

91 aspectdef InstrumentParameters
92

93 input
94 laraObject ,
95 onlyPrimitives
96 end
97

98 P: select function.param end
99 F: select function.body.first_stmt end

100 apply to F::P
101

102 if(onlyPrimitives)
103 if(! $param.is_primitive)
104 continue;
105

106 var index = laraObject.getId(’param ’, $function.name , $param.name);
107 $first_stmt.insert before ’range_update (&( __r_a[ [[index ]] ]), [[ $param.name ]]); /* param

*/’;
108 end
109 condition
110 $function.name != "main" &&
111 !$param.is_array &&
112 !$param.is_pointer &&
113 !$param.is_struct &&
114 $param.name != ""
115 end
116 end
117

118 aspectdef InstrumentWrites
119

120 input
121 laraObject ,
122 onlyPrimitives
123 end
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124

125 select file.function.var end
126 apply
127 if(onlyPrimitives)
128 if(!$var.is_primitive)
129 continue;
130

131 var index = laraObject.getId(’write ’, $function.name , $var.name).toString ();
132 $var.insert after ’range_update (&( __r_a[ [[index]] ]), [[$var.name ]]);’;
133 end
134 condition
135 !$var.in_loop_header &&
136 $var.reference == "write" &&
137 !$var.is_array &&
138 !$var.is_pointer &&
139 !$var.is_struct
140 end
141 end
142

143 aspectdef InstrumentReturns
144

145 input
146 laraObject ,
147 onlyPrimitives
148 end
149

150 select function.return.var end
151 apply
152 if(onlyPrimitives)
153 if(!$var.is_primitive)
154 continue;
155

156 var index = laraObject.getId(’return ’, $function.name , $var.name).toString ();
157 $return.insert before ’range_update (&( __r_a[ [[ index]] ]), [[$var.name ]]);’;
158 end
159 condition
160 !$var.is_array &&
161 !$var.is_pointer &&
162 !$var.is_struct
163 end
164 end

ASCV3 s

1 aspectdef AutoSeerCurrentv3_structs
2

3 input
4 onlyPrimitives=true;
5 end
6

7 var laraObj = new LaraObject ();
8

9 call PrepareProgram ();
10 call InstrumentParameters(laraObj , onlyPrimitives);
11 call InstrumentWrites(laraObj , onlyPrimitives);
12 call InstrumentReturns(laraObj , onlyPrimitives);
13 call SetupInstrumentation(laraObj);
14 end
15

16

17

18 aspectdef PrepareProgram
19

20 select program end
21 apply
22 $program.perform SingleDeclarator ();
23 $program.perform AssignmentExpansion ();
24 $program.perform StructAssignmentDecomposition ();
25 $program.perform UnaryExpansion ();
26 $program.perform NormalizeReturn ();
27 end
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28 end
29

30 aspectdef SetupInstrumentation
31

32 input
33 laraObject
34 end
35

36 var size = laraObject.getTotal ();
37

38 select function end
39 apply
40 insert before ’#include "range.h"’;
41 insert before ’Range __r_a[ [[size]] ];’;
42 break;
43 end
44

45 select function{"main"}. first_stmt end
46 apply
47 insert before ’range_init(__r_a , [[size ]]);\ natexit(print_ranges_to_file);’;
48 end
49

50 var PrintFunctionJS = function (laraObject) {
51

52 var code = ’\nFILE* file;\ ndouble inf = 1.0 / 0.0;\n’;
53 code += ’file = fopen ("./ output/range.mon", "w");\n\n’;
54

55 code += ’if(file == NULL){printf ("Could not open the output file .\\n"); return ;}\n\n’;
56

57 code += ’fprintf(file , "’ + size + ’\\n");\n’;
58

59 for(var type in laraObject) {
60

61 if(! laraObject.hasOwnProperty(type) || typeof laraObject[type] == ’function ’) {
62 continue;
63 }
64

65 code += ’fprintf(file , "t#’ + type + ’\\n");\n’;
66

67 for(var func in laraObject[type]){
68

69 code += ’fprintf(file , "f#’ + func + ’\\n");\n’;
70

71 for (var vari in laraObject[type][func]) {
72

73 code += ’if(__r_a[’ + laraObject[type][func][vari] + ’].min != 1./0.) {\n’;
74 code += ’fprintf(file , "v#’ + vari + ’#’ + laraObject[type][func][vari] + ’");\n’;
75

76 code += ’fprintf(file , "#%.2f#%.2f\\n", __r_a[’ + laraObject[type][func][vari] + ’
].min , __r_a[’ + laraObject[type][func][vari] + ’].max);\n}\n’;

77

78 }
79 }
80 }
81

82 code += ’\nfclose(file);\n’;
83

84 return code;
85 };
86 var code = PrintFunctionJS(laraObject);
87

88 select function{"main"} end
89 apply
90 insert before ’void print_ranges_to_file () {\n[[code ]]}’;
91 end
92 end
93

94 aspectdef InstrumentParameters
95

96 input
97 laraObject ,
98 onlyPrimitives
99 end
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100

101 P: select function.param end
102 F: select function.body.first_stmt end
103 apply to F::P
104

105 if(onlyPrimitives)
106 if(! $param.is_primitive)
107 continue;
108

109 var index = laraObject.getId(’param ’, $function.name , $param.name);
110 $first_stmt.insert before ’range_update (&( __r_a[ [[index ]] ]), [[ $param.name ]]); /* param

*/’;
111 end
112 condition
113 $function.name != "main" &&
114 !$param.is_array &&
115 !$param.is_pointer &&
116 !$param.is_struct &&
117 $param.name != ""
118 end
119 end
120

121 aspectdef InstrumentWrites
122

123 input
124 laraObject ,
125 onlyPrimitives
126 end
127

128

129 select file.function.var{reference == ’write’} end
130 apply
131

132 if(onlyPrimitives)
133 if(!$var.is_primitive)
134 continue;
135 var index = laraObject.getId(’write ’, $function.name , $var.name);
136 $var.insert after ’range_update (&( __r_a[ [[index]] ]), [[$var.name ]]);’;
137

138 end
139 condition
140 !$var.in_loop_header &&
141 !$var.is_array &&
142 !$var.is_struct &&
143 !$var.is_pointer
144 end
145 end
146

147 aspectdef InstrumentReturns
148

149 input
150 laraObject ,
151 onlyPrimitives
152 end
153

154 select function.return.var end
155 apply
156 if(onlyPrimitives)
157 if(!$var.is_primitive)
158 continue;
159

160 var index = laraObject.getId(’return ’, $function.name , $var.name).toString ();
161 $return.insert before ’range_update (&( __r_a[ [[ index]] ]), [[$var.name ]]);’;
162 end
163 condition
164 !$var.is_array &&
165 !$var.is_pointer &&
166 !$var.is_struct
167 end
168 end
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FREQ

1 aspectdef Frequency
2

3 input
4 reportName=’’,
5 onlyPrimitives=true
6 end
7

8 var laraObj = new LaraObject ();
9

10 call res : ChooseVarsToMonitor (0.01, reportName);
11 var varsToMonitor = res.varsToMonitor;
12

13 call PrepareProgram ();
14 call InstrumentWrites(laraObj , varsToMonitor , onlyPrimitives);
15 call SetupInstrumentation(laraObj);
16 end
17

18 aspectdef ChooseVarsToMonitor
19

20 input threshold , reportName end
21 output varsToMonitor end
22 varsToMonitor = [];
23

24 var reportPath = ’./ reports/’ + reportName + ’freq.report ’;
25

26 var report = fileToJSON(reportPath);
27 var total = report[’total ’];
28 for(funcVar in report) {
29

30 var ratio = report[funcVar] / total;
31 if(ratio > threshold) {
32

33 varsToMonitor.push(funcVar);
34 }
35 }
36 varsToMonitor.pop();
37 end
38

39 aspectdef PrepareProgram
40

41 select program end
42 apply
43 $program.perform SingleDeclarator ();
44 $program.perform AssignmentExpansion ();
45 $program.perform UnaryExpansion ();
46 $program.perform NormalizeReturn ();
47 end
48 end
49

50 aspectdef InstrumentWrites
51

52 input
53 laraObject ,
54 varsToMonitor ,
55 onlyPrimitives
56 end
57

58 var present = function(array , key) {
59

60 for(el in array) {
61

62 if(array[el] === key) {
63 return true;
64 }
65 }
66 return false;
67 };
68

69 select function.var end
70 apply
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71

72 if(onlyPrimitives)
73 if(!$var.is_primitive)
74 continue;
75

76 var key = $function.name + ’#’ + $var.name;
77 if(present(varsToMonitor , key)) {
78

79 var index = laraObject.getId(’write ’, $function.name , $var.name);
80 $var.insert after ’range_update (&( __r_a[ [[index]] ]), [[$var.name ]]);’;
81 }
82 end
83 condition
84 !$var.in_loop_header &&
85 $var.reference == "write" &&
86 !$var.is_array &&
87 !$var.is_pointer &&
88 !$var.is_struct
89 end
90 end
91

92 aspectdef SetupInstrumentation
93

94 input
95 laraObject
96 end
97

98 var size = laraObject.getTotal ();
99

100 select function end
101 apply
102 insert before ’#include "range.h"’;
103 insert before ’Range __r_a[ [[size]] ];’;
104 break;
105 end
106

107 select function{"main"}. first_stmt end
108 apply
109 insert before ’range_init(__r_a , [[size ]]);\ natexit(print_ranges_to_file);’;
110 end
111

112 var PrintFunctionJS = function (laraObject) {
113

114 var code = ’\nFILE* file;\ ndouble inf = 1.0 / 0.0;\n’;
115 code += ’file = fopen ("./ output/range.mon", "w");\n\n’;
116

117 code += ’if(file == NULL){printf ("Could not open the output file .\\n"); return ;}\n\n’;
118

119 code += ’fprintf(file , "’ + size + ’\\n");\n’;
120

121 for(var type in laraObject) {
122

123 if(! laraObject.hasOwnProperty(type) || typeof laraObject[type] == ’function ’) {
124 continue;
125 }
126

127 code += ’fprintf(file , "t#’ + type + ’\\n");\n’;
128

129 for(var func in laraObject[type]){
130

131 code += ’fprintf(file , "f#’ + func + ’\\n");\n’;
132

133 for (var vari in laraObject[type][func]) {
134

135 code += ’if(__r_a[’ + laraObject[type][func][vari] + ’].min != 1./0.) {\n’;
136 code += ’fprintf(file , "v#’ + vari + ’#’ + laraObject[type][func][vari] + ’");\n’;
137

138 code += ’fprintf(file , "#%.2f#%.2f\\n", __r_a[’ + laraObject[type][func][vari] + ’
].min , __r_a[’ + laraObject[type][func][vari] + ’].max);\n}\n’;

139

140 }
141 }
142 }
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143

144 code += ’\nfclose(file);\n’;
145

146 return code;
147 };
148 var code = PrintFunctionJS(laraObject);
149

150 select function{"main"} end
151 apply
152 insert before ’void print_ranges_to_file () {\n[[code ]]}’;
153 end
154 end

FANIN

1 aspectdef FanIn
2

3 input
4 reportName=’’,
5 onlyPrimitives=true
6 end
7

8 var laraObj = new LaraObject ();
9

10 call res : ChooseVarsToMonitor (2, reportName);
11 var varsToMonitor = res.varsToMonitor;
12

13 call PrepareProgram ();
14 call InstrumentWrites(laraObj , varsToMonitor , onlyPrimitives);
15 call SetupInstrumentation(laraObj);
16 end
17

18 aspectdef ChooseVarsToMonitor
19

20 input threshold , reportName end
21 output varsToMonitor end
22 varsToMonitor = [];
23

24 var reportPath = ’./ reports/’ + reportName + ’fan_in.report ’;
25

26 var report = fileToJSON(reportPath);
27 for(funcVar in report) {
28

29 if(report[funcVar] > threshold) {
30

31 varsToMonitor.push(funcVar);
32 }
33 }
34 end
35

36 aspectdef PrepareProgram
37

38 select program end
39 apply
40 $program.perform SingleDeclarator ();
41 $program.perform AssignmentExpansion ();
42 $program.perform UnaryExpansion ();
43 $program.perform NormalizeReturn ();
44 end
45 end
46

47 aspectdef InstrumentWrites
48

49 input
50 laraObject ,
51 varsToMonitor ,
52 onlyPrimitives
53 end
54

55 var present = function(array , key) {
56
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57 for(el in array) {
58

59 if(array[el] === key) {
60 return true;
61 }
62 }
63 return false;
64 };
65

66 select function.var end
67 apply
68

69 if(onlyPrimitives)
70 if(!$var.is_primitive)
71 continue;
72

73 var key = $function.name + ’#’ + $var.name;
74 if(present(varsToMonitor , key)) {
75

76 var index = laraObject.getId(’write ’, $function.name , $var.name);
77 $var.insert after ’range_update (&( __r_a[ [[index]] ]), [[$var.name ]]);’;
78 }
79 end
80 condition
81 !$var.in_loop_header &&
82 $var.reference == "write" &&
83 !$var.is_array &&
84 !$var.is_pointer &&
85 !$var.is_struct
86 end
87 end
88

89 aspectdef SetupInstrumentation
90

91 input
92 laraObject
93 end
94

95 var size = laraObject.getTotal ();
96

97 select function end
98 apply
99 insert before ’#include "range.h"’;

100 insert before ’Range __r_a[ [[size]] ];’;
101 break;
102 end
103

104 select function{"main"}. first_stmt end
105 apply
106 insert before ’range_init(__r_a , [[size ]]);\ natexit(print_ranges_to_file);’;
107 end
108

109 var PrintFunctionJS = function (laraObject) {
110

111 var code = ’\nFILE* file;\ ndouble inf = 1.0 / 0.0;\n’;
112 code += ’file = fopen ("./ output/range.mon", "w");\n\n’;
113

114 code += ’if(file == NULL){printf ("Could not open the output file .\\n"); return ;}\n\n’;
115

116 code += ’fprintf(file , "’ + size + ’\\n");\n’;
117

118 for(var type in laraObject) {
119

120 if(! laraObject.hasOwnProperty(type) || typeof laraObject[type] == ’function ’) {
121 continue;
122 }
123

124 code += ’fprintf(file , "t#’ + type + ’\\n");\n’;
125

126 for(var func in laraObject[type]){
127

128 code += ’fprintf(file , "f#’ + func + ’\\n");\n’;
129
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130 for (var vari in laraObject[type][func]) {
131

132 code += ’if(__r_a[’ + laraObject[type][func][vari] + ’].min != 1./0.) {\n’;
133 code += ’fprintf(file , "v#’ + vari + ’#’ + laraObject[type][func][vari] + ’");\n’;
134

135 code += ’fprintf(file , "#%.2f#%.2f\\n", __r_a[’ + laraObject[type][func][vari] + ’
].min , __r_a[’ + laraObject[type][func][vari] + ’].max);\n}\n’;

136

137 }
138 }
139 }
140

141 code += ’\nfclose(file);\n’;
142

143 return code;
144 };
145 var code = PrintFunctionJS(laraObject);
146

147 select function{"main"} end
148 apply
149 insert before ’void print_ranges_to_file () {\n[[code ]]}’;
150 end
151 end

COMBAND

1 aspectdef CombineAnd
2

3 input
4 reportName=’’,
5 onlyPrimitives=true
6 end
7

8 var laraObj = new LaraObject ();
9

10 call res : ChooseVarsToMonitor (2, 0.01, reportName);
11 var varsToMonitor = res.varsToMonitor;
12

13 call PrepareProgram ();
14 call InstrumentWrites(laraObj , varsToMonitor , onlyPrimitives);
15 call SetupInstrumentation(laraObj);
16 end
17

18 aspectdef ChooseVarsToMonitor
19

20 input
21 fanInThreshold ,
22 freqThreshold ,
23 reportName
24 end
25 output varsToMonitor end
26 varsToMonitor = [];
27

28 var fanInReport = fileToJSON(’./ reports/’ + reportName + ’fan_in.report ’);
29 var freqReport = fileToJSON(’./ reports/’ + reportName + ’freq.report ’);
30

31 var isFreqGood = function (value , total , threshold) {
32 return (value != undefined) &&
33 (value / total > threshold);
34 };
35

36 var isFanInGood = function (value , threshold) {
37 return (value != undefined) &&
38 (value > threshold);
39 };
40

41 var total = freqReport[’total’];
42

43 for(funcVar in fanInReport)
44 if(isFanInGood(fanInReport[funcVar], fanInThreshold))
45 if(isFreqGood(freqReport[funcVar], total , freqThreshold))

45



46 varsToMonitor.push(funcVar);
47 end
48

49 aspectdef PrepareProgram
50

51 select program end
52 apply
53 $program.perform SingleDeclarator ();
54 $program.perform AssignmentExpansion ();
55 $program.perform UnaryExpansion ();
56 $program.perform NormalizeReturn ();
57 end
58 end
59

60 aspectdef InstrumentWrites
61

62 input
63 laraObject ,
64 varsToMonitor ,
65 onlyPrimitives
66 end
67

68 var present = function(array , key) {
69

70 for(el in array) {
71

72 if(array[el] === key) {
73 return true;
74 }
75 }
76 return false;
77 };
78

79 select function.var end
80 apply
81

82 if(onlyPrimitives)
83 if(!$var.is_primitive)
84 continue;
85

86 var key = $function.name + ’#’ + $var.name;
87 if(present(varsToMonitor , key)) {
88

89 var index = laraObject.getId(’write ’, $function.name , $var.name);
90 $var.insert after ’range_update (&( __r_a[ [[index]] ]), [[$var.name ]]);’;
91 }
92 end
93 condition
94 !$var.in_loop_header &&
95 $var.reference == "write" &&
96 !$var.is_array &&
97 !$var.is_pointer &&
98 !$var.is_struct
99 end

100 end
101

102 aspectdef SetupInstrumentation
103

104 input
105 laraObject
106 end
107

108 var size = laraObject.getTotal ();
109

110 select function end
111 apply
112 insert before ’#include "range.h"’;
113 insert before ’Range __r_a[ [[size]] ];’;
114 break;
115 end
116

117 select function{"main"}. first_stmt end
118 apply
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119 insert before ’range_init(__r_a , [[size ]]);\ natexit(print_ranges_to_file);’;
120 end
121

122 var PrintFunctionJS = function (laraObject) {
123

124 var code = ’\nFILE* file;\ ndouble inf = 1.0 / 0.0;\n’;
125 code += ’file = fopen ("./ output/range.mon", "w");\n\n’;
126

127 code += ’if(file == NULL){printf ("Could not open the output file .\\n"); return ;}\n\n’;
128

129 code += ’fprintf(file , "’ + size + ’\\n");\n’;
130

131 for(var type in laraObject) {
132

133 if(! laraObject.hasOwnProperty(type) || typeof laraObject[type] == ’function ’) {
134 continue;
135 }
136

137 code += ’fprintf(file , "t#’ + type + ’\\n");\n’;
138

139 for(var func in laraObject[type]){
140

141 code += ’fprintf(file , "f#’ + func + ’\\n");\n’;
142

143 for (var vari in laraObject[type][func]) {
144

145 code += ’if(__r_a[’ + laraObject[type][func][vari] + ’].min != 1./0.) {\n’;
146 code += ’fprintf(file , "v#’ + vari + ’#’ + laraObject[type][func][vari] + ’");\n’;
147

148 code += ’fprintf(file , "#%.2f#%.2f\\n", __r_a[’ + laraObject[type][func][vari] + ’
].min , __r_a[’ + laraObject[type][func][vari] + ’].max);\n}\n’;

149

150 }
151 }
152 }
153

154 code += ’\nfclose(file);\n’;
155

156 return code;
157 };
158 var code = PrintFunctionJS(laraObject);
159

160 select function{"main"} end
161 apply
162 insert before ’void print_ranges_to_file () {\n[[code ]]}’;
163 end
164 end

COMBOR

1 aspectdef CombineOr
2

3 input
4 reportName=’’,
5 onlyPrimitives=true
6 end
7

8 var laraObj = new LaraObject ();
9

10 call res : ChooseVarsToMonitor (2, 0.01, reportName);
11 var varsToMonitor = res.varsToMonitor;
12

13 call PrepareProgram ();
14 call InstrumentWrites(laraObj , varsToMonitor , onlyPrimitives);
15 call SetupInstrumentation(laraObj);
16 end
17

18 aspectdef ChooseVarsToMonitor
19

20 input
21 fanInThreshold ,
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22 freqThreshold ,
23 reportName
24 end
25 output varsToMonitor end
26 varsToMonitor = [];
27

28 var tempSet = {};
29

30 var fanInReport = fileToJSON(’./ reports/’ + reportName + ’fan_in.report ’);
31 var freqReport = fileToJSON(’./ reports/’ + reportName + ’freq.report ’);
32

33 for(funcVar in fanInReport) {
34

35 if(fanInReport[funcVar] > fanInThreshold) {
36

37 tempSet[funcVar] = 1;
38 }
39 }
40

41 var total = freqReport[’total’];
42 for(funcVar in freqReport) {
43

44 var ratio = freqReport[funcVar] / total;
45 if(ratio > freqThreshold) {
46

47 tempSet[funcVar] = 1;
48 }
49 }
50 tempSet[’total’] = undefined;
51

52 for(funcVar in tempSet) {
53

54 if(tempSet[funcVar] == 1)
55 varsToMonitor.push(funcVar);
56 }
57 end
58

59 aspectdef PrepareProgram
60

61 select program end
62 apply
63 $program.perform SingleDeclarator ();
64 $program.perform AssignmentExpansion ();
65 $program.perform UnaryExpansion ();
66 $program.perform NormalizeReturn ();
67 end
68 end
69

70 aspectdef InstrumentWrites
71

72 input
73 laraObject ,
74 varsToMonitor ,
75 onlyPrimitives
76 end
77

78 var present = function(array , key) {
79

80 for(el in array) {
81

82 if(array[el] === key) {
83 return true;
84 }
85 }
86 return false;
87 };
88

89 select function.var end
90 apply
91

92 if(onlyPrimitives)
93 if(!$var.is_primitive)
94 continue;

48



95

96 var key = $function.name + ’#’ + $var.name;
97 if(present(varsToMonitor , key)) {
98

99 var index = laraObject.getId(’write ’, $function.name , $var.name);
100 $var.insert after ’range_update (&( __r_a[ [[index]] ]), [[$var.name ]]);’;
101 }
102 end
103 condition
104 !$var.in_loop_header &&
105 $var.reference == "write" &&
106 !$var.is_array &&
107 !$var.is_pointer &&
108 !$var.is_struct
109 end
110 end
111

112 aspectdef SetupInstrumentation
113

114 input
115 laraObject
116 end
117

118 var size = laraObject.getTotal ();
119

120 select function end
121 apply
122 insert before ’#include "range.h"’;
123 insert before ’Range __r_a[ [[size]] ];’;
124 break;
125 end
126

127 select function{"main"}. first_stmt end
128 apply
129 insert before ’range_init(__r_a , [[size ]]);\ natexit(print_ranges_to_file);’;
130 end
131

132 var PrintFunctionJS = function (laraObject) {
133

134 var code = ’\nFILE* file;\ ndouble inf = 1.0 / 0.0;\n’;
135 code += ’file = fopen ("./ output/range.mon", "w");\n\n’;
136

137 code += ’if(file == NULL){printf ("Could not open the output file .\\n"); return ;}\n\n’;
138

139 code += ’fprintf(file , "’ + size + ’\\n");\n’;
140

141 for(var type in laraObject) {
142

143 if(! laraObject.hasOwnProperty(type) || typeof laraObject[type] == ’function ’) {
144 continue;
145 }
146

147 code += ’fprintf(file , "t#’ + type + ’\\n");\n’;
148

149 for(var func in laraObject[type]){
150

151 code += ’fprintf(file , "f#’ + func + ’\\n");\n’;
152

153 for (var vari in laraObject[type][func]) {
154

155 code += ’if(__r_a[’ + laraObject[type][func][vari] + ’].min != 1./0.) {\n’;
156 code += ’fprintf(file , "v#’ + vari + ’#’ + laraObject[type][func][vari] + ’");\n’;
157

158 code += ’fprintf(file , "#%.2f#%.2f\\n", __r_a[’ + laraObject[type][func][vari] + ’
].min , __r_a[’ + laraObject[type][func][vari] + ’].max);\n}\n’;

159

160 }
161 }
162 }
163

164 code += ’\nfclose(file);\n’;
165

166 return code;
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167 };
168 var code = PrintFunctionJS(laraObject);
169

170 select function{"main"} end
171 apply
172 insert before ’void print_ranges_to_file () {\n[[code ]]}’;
173 end
174 end
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