
An OpenGL-based Eclipse Plug-in for Visual Debugging

André Riboira Rui Abreu Rui Rodrigues

Department of Informatics Engineering
University of Porto

Portugal
{andre.riboira, rma, rui.rodrigues}@fe.up.pt

ABSTRACT
Locating components which are responsible for observed fail-
ures is the most expensive, error-prone phase in the software
development life cycle. Automated diagnosis of software
faults (aka bugs) can improve the efficiency of the debug-
ging process, and is therefore an important process for the
development of dependable software. Although the output
of current automatic fault localization techniques is deemed
to be useful, the debugging potential has been limited by
the lack of a visualization tool that provides intuitive feed-
back about the defect distribution over the code base, and
easy access to the faulty locations. To help unleash that po-
tential, we present an OpenGL-based Eclipse plug-in that
explores two visualization techniques - viz. treemap and
sunburst - aimed at aiding the developer to acquire a broad
sense of the error distribution, and find faults quickly.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: testing and debugging;
H.5.2 [User Interfaces]: Graphical user interfaces (GUI)

Keywords
diagnosis, visual techniques, eclipse plug-in.

1. INTRODUCTION
When unexpected behavior is observed, developers need

to identify the root cause that makes the system deviate
from its intended behavior. This task (also known as soft-
ware debugging, fault localization, or fault diagnosis1) is the
most time-intensive and expensive phase of the software de-
velopment cycle [8], and is being performed since the begin-
ning of computer history. As an indication of the downtime,
debugging, and repair costs involved, a 2002 landmark study
indicated that software bugs pose an annual $60 billion cost
to the US economy alone [14].

1In this paper, the terms software debugging, fault localiza-
tion and fault diagnosis are used interchangeably.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TOPI’11 May 28, 2011 - Waikiki, Honolulu, Hawai’i, USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

A traditional approach to fault localization is to insert
print statements in the program to generate additional de-
bugging information to help identifying the root cause of
the observed failure. Essentially, the developer adds these
statements to the program to get a glimpse of the runtime
state, variable values, or to verify that the execution has
reached a particular part of the program. Another com-
mon technique is the use of a symbolic debugger which sup-
ports additional features such as breakpoints, single step-
ping, and state modifying. Examples of symbolic debuggers
are GDB [15], DBX [6], DDD [18], Exdams [4], and the
debugger proposed by Agrawal, Demillo, and Spafford [3].
Symbolic debuggers are included in many integrated devel-
opment environments (IDE) such as Eclipse2, Microsoft Vi-
sual Studio3, Xcode4, and Delphi5.

These traditional, manual fault localization approaches
have a number of important limitations. The placement
of print statements as well as the inspection of their out-
put are unstructured and ad-hoc, and are typically based
on the developer’s intuition. In addition, developers tend to
use only test cases that reveal the failure (i.e., failing test
cases), and therefore do not use valuable information from
passing test cases. Furthermore, the size of the program
state at each point can be large, and there are many com-
binations of program executions that have to be examined.
Hence, such techniques still require a detailed knowledge of
the program, and also suffer from a substantial execution
overhead in terms of execution time and space to store his-
torical run-time data. Last, but not least, manual debugging
is extremely expensive in terms of labor cost.

Aimed at drastic cost reduction, much research has been
performed in developing automatic fault localization tech-
niques/tools. Regardless, apart from [5, 11], little work has
focused on developing a visual representation of the diag-
nostic report. In this paper, we present GZoltar, a visual
debugger for Java programs. GZoltar is implemented as
a plug-in for the IDE Eclipse using OpenGL technology for
rendering the visualizations. In particular, two visualiza-
tions are implemented: (1) treemap and (2) sunburst [16].

The remainder of this paper is organized as follows. We
start by introducing relevant concepts in the field of au-
tomatic debugging. Then, the GZoltar Eclipse plug-in is
described. Finally, in section 4, we conclude and give direc-
tions for future work.

2http://www.eclipse.org/
3http://msdn.microsoft.com/en-us/vstudio/
4http://developer.apple.com/tools/xcode/
5http://www.codegear.com/

2. AUTOMATIC DEBUGGING
The process of pinpointing the fault(s) that led to symp-

toms (failures/errors) is called fault localization, and has
been an active area of research for the past decades. Based
on a set of observations, automatic approaches to software
fault localization yield a list of likely fault locations, which
is subsequently used either by the developer to focus the
software debugging process, or as an input to automatic re-
covery mechanisms [12]. Depending on the amount of knowl-
edge that is required about the system’s internal component
structure and behavior, the most predominant approaches
to fault localization can be classified as (1) statistical ap-
proaches or (2) reasoning approaches. The former approach
uses an abstraction of program traces, dynamically collected
at runtime, to produce a list of likely candidates to be at
fault, whereas the latter combines a static model of the ex-
pected behavior with a set of observations to compute the
diagnostic report.

A statistical approach to spectrum-based fault localization
(SFL) will now be described. A program under analysis com-
prises a set of M components (e.g., functions, statements)
cj where j ∈ {1, . . . ,M}, and can have multiple faults, the
number being denoted C (fault cardinality). A diagnostic
report D =< . . . , dk, . . . > is an ordered set of diagnosis
candidates dk ordered in terms of likelihood to be the true
diagnosis. Statistical approaches yield a single-fault diag-
nostic report with the M components ordered in terms of
statistical similarity (e.g., < {3}, {1}, . . . >, in terms of the
indices j of the components cj).

Program (component) activity is recorded in terms of pro-
gram spectra [9]. This data is collected at run-time, and
typically consists of a number of counters or flags for the
different components of a program. In this paper we use
the so-called hit spectra, which indicate whether a compo-
nent was involved in a (test) run or not. Both spectra and
program pass/fail (test) information is input to SFL. The
program spectra are expressed in terms of the N ×M activ-
ity matrix A. An element aij is equal to 1 if component j
was observed to be involved in the execution of run i, and
0 otherwise. For j ≤ M , the row Ai∗ indicates whether
a component was executed in run i, whereas the column
A∗j indicates in which runs component j was involved. The
pass/fail information is stored in a vector e, the error vec-
tor, where ei represents whether run i has passed (ei = 0)
or failed (ei = 1). Note that the pair (A, e) is the only input
to SFL.

In SFL one measures the statistical similarity between the
error vector e and the activity profile column A∗j for each
component cj . This similarity is quantified by a similarity
coefficient, expressed in terms of four counters npq(j) that
count the number of elements in which A∗j and e contain
respective values p and q, i.e, for p, q ∈ {0, 1}, we define

npq(j) = |{i | aij = p ∧ ei = q}|

An example of a well-known similarity coefficient is the
Ochiai coefficient, which is among the best for fault local-
ization [1, 2]

s(j) =
n11(j)√

(n11(j) + n10(j)) · (n11(j) + n01(j))
(1)

Due to space limitation we do not illustrate how Ochiai
works; for detailed information, refer to [1]. Ochiai is also
implemented in the Zoltar toolset [10].

3. GZOLTAR
Current visual (automatic) debugging tools are either

standalone applications [10, 11] or lack a meaningful data
visualization [5]. GZoltar is an effort to overcome these
shortcomings, by adding powerful visualization features to
SFL’s core processing. GZoltar6 aims at integrating de-
bugging processing: executes automatically unit tests to
generate the activity matrix; obtains diagnostic report; pro-
cesses data dependency between lines of code; and provides
a powerful interactive debugging data visualization and nav-
igation interface. All these features are integrated in a plug-
in for Eclipse, one of the most popular IDE’s [7].

GZoltar’s execution is split into two main phases:

• Data Processing

• Visualization and Interaction

The first phase, data processing, is only executed at startup,
and later upon user request (e.g., after modifying the source
code of the project under analysis). In this phase, GZoltar
detects Eclipse’s open projects and their contents (e.g,
classes, methods, etc.). The activity matrix is generated
based on the execution of a series of unit tests (these have
to be provided in the project following a naming convention
as described in [13]). Code coverage information is gathered
during execution and the failure probability for each module
is then computed using SFL.

The second phase, visualization and interaction, is exe-
cuted in loop until exit or user request. The pre-processed
tree has the needed data to render powerful OpenGL visu-
alizations. User can interact with GZoltar by navigating
through the visualization, by expanding or collapsing visu-
alization tree nodes, zooming, panning, and changing the
visualization tree root. Because there is no visualization
that offers the best result in all circumstances, GZoltar of-
fers two popular tree structured data visualizations, treemap
and sunburst [16] (see Figure 1). Many other visualizations
can easily be added in the future. The user can swap be-
tween visualizations, maintaining the same debugging data
tree as well as navigation data.

Figure 1: GZoltar view in the Eclipse IDE. In the
background, sunburst in a common view. In the
foreground, treemap in a maximized view.

GZoltar integrates seamlessly into Eclipse. The user can
open the standard Eclipse code editor directly from the vi-
sualization, in the line of code that is being analyzed. More-

6GZoltar official website http://www.gzoltar.org/

over, standard Eclipse warnings with each line’s failure prob-
ability are also generated. Like other Eclipse warning, these
are also listed in the “Problems” area, and in the tooltips of
the code editor near the line of code as well as in the editor’s
scrollbar. This aims at reducing the learning curve, through
the use of standard Eclipse features (see Figure 2).

Figure 2: GZoltar produces standard Eclipse warn-
ings revealing each component failure probability.

OpenGL integration and code coverage operations require
additional plug-ins. Since Eclipse does not support OpenGL
natively, GZoltar uses Java OpenGL library (JOGL) [17],
to create a bridge between native OpenGL system libraries
and AWT7, the toolkit that grants window abstraction.
Eclipse uses SWT8 to process its Workbench, but it also
has a bridge between SWT and AWT. Because of this, it is
possible to use OpenGL technology inside a standard Eclipse
view. Eclipse also offers connections to its Workspace, al-
lowing GZoltar to detect open projects and create stan-
dard warnings. Code coverage analysis of the test execu-
tions is done with JaCoCo9, a Java Code Coverage API from
EclEmma10 development team. Relations between different
technologies used by GZoltar are depicted in Figure 3.

JaCoCo

Workspace

JOGL

AWT

SWT

Workbench

Operating System

Figure 3: GZoltar’s technological layers.

GZoltar’s architecture is very modular. It is simple to
improve GZoltar by modifying only a certain module, such
as replacing the diagnostic algorithm, or creating new visual-
izations. Each module works as a service provider, and can

7http://java.sun.com/products/jdk/awt/
8http://www.eclipse.org/swt/
9http://www.eclemma.org/jacoco/

10http://www.eclemma.org/

be upgraded in the future without much effort. Installing
GZoltar is straightforward: like any traditional Eclipse
plug-in, it can be installed directly by Eclipse’s “Install new
software” feature. GZoltar is multi-platform, compatible
with 32 and 64 bit CPU architectures and Microsoft Win-
dows, Apple Mac OS X, and Linux operating systems. After
installation, GZoltar view is available in Eclipse and can be
used just as any other Eclipse view. The default visualiza-
tion is the sunburst, which focuses more on the hierarchical
data structure, and the second visualization is the treemap,
which focuses more on the tree leafs (see Figure 4). Each
one of these visualization concepts has advantages and dis-
advantages, and their efficiency varies much with the data
tree arrangement [16]. As such, it is important to have mul-
tiple visualizations to help the user to achieve his/her goals.

Figure 4: Sunburst and treemap visualizations, side-
by-side, using the same debugging data as input.

Users can interact with GZoltar in multiple ways. Ini-
tially only the first level of the data tree is displayed, and
users can click on any component to expand it. If (s)he
clicks on an opened component, it will be collapsed. This
way, (s)he can analyze only the desired part of the system. If
the user wants to have a glimpse of the entire system, (s)he
can expand all components by pressing the “space” key. The
user can also zoom and pan into a specific area of any visual-
ization to obtain more detail (see Figure 5). Because system
visualizations can get overly complex, GZoltar also offers
the possibility of analyzing a sub-tree, by choosing any in-
ner node to be the new root of the tree (ignoring siblings).
A new visualization is rendered with that chosen sub-tree.
(S)he can raise the visible tree nodes by selecting any upper
level. This is an important feature to analyze complex sys-
tems, because the user can focus only on the desired area,
and visualize it as an independent system. The user can also
get information for each component by placing the mouse
cursor over its graphical representation, causing a label with
that component name, location and failure probability to be
rendered.

Each component color represents its failure probability,
as given by the diagnostic algorithm. Component colors
vary from red (maximum failure probability) to green (zero
failure probability). When using sunburst visualization, the
user can have extra information, by hovering the mouse cur-
sor over a leaf node component. In that case, the component
colors are changed to reveal relations between lines of code.
Leaf node component colors will vary from the color of the
selected component to gray, considering the depth of relation
between that component and the selected one (see Figure 6).

Figure 5: Sunburst visualization zoomed into a spe-
cific system area.

If two components have exactly the same color, it means that
they were executed in the same unit tests execution (same
execution pattern). On the other hand, if a component has
a gray color, it means that there is no (execution) relation
between that component and the selected one.

Figure 6: Relations between leaf node components
on sunburst visualization.

For a detailed overview on GZoltar operation, instal-
lation and user manual, please refer to [13]. A video
showing how to install and use GZoltar can be found at
http://www.gzoltar.org/.

4. CONCLUSIONS & FUTURE WORK
Software faults are responsible for a significant part of

the costs of software development. Thus, reducing them
is of utmost importance, leading to a high interest in the
search for effective tools for (automatic) fault localization.
However, the tools currently available are limited in the lo-
calization information they provide, in the ways that they
present that information, or relate to the main development
tools and environments. Any of these factors hampers the
effectiveness of such debugging tools. The tool presented
in this paper - dubbed GZoltar - aims to overcome these
limitations. It uses a state-of-the-art SFL algorithm [1] to
achieve high-quality fault localization. It provides powerful

interactive graphical visualizations of the SFL data - sun-
bursts and treemaps - to allow fast comprehension of the
fault distribution and interactive data analysis. It was de-
veloped as a plugin for one of the most used IDE’s [7], thus
allowing seamless integration and interaction between fault
visualization, code, and IDE’s reporting facilities.

The tool has been built in a modular and extendable way,
thus facilitating future improvements. A thorough usabil-
ity study is being conducted, to evaluate the tool and pro-
vide ideas for such improvements. Some ideas that are al-
ready being considered include: the integration of JUnit
with GZoltar (to handle unit tests); the exploration of
new tree-structured data visualization concepts; extensions
to the navigation tools, such as the creation of a mini-map to
be displayed on zoom-in, or a spectrum color bar to be used
as reference to aid users in the component color evaluation
process; and integration with new interaction paradigms,
like multi-touch input devices, to facilitate user interaction.

5. REFERENCES
[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund.

A practical evaluation of spectrum-based fault localization.
Journal of Systems & Software (JSS), 2009.

[2] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund.
Spectrum-based multiple fault localization. In Proc. of the
International Conference on Automated Software Engineering
(ASE’09). IEEE Computer Society, 2009.

[3] H. Agrawal, R. de Millo, and E. Spafford. An execution
backtracking approach to program debugging. IEEE Software,
1991.

[4] R. M. Balzer. EXDAMS: Extendible debugging and monitoring
system. In Proc. of the AFIPS Spring Joint Conference.
AFIPS Press, 1969.

[5] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann. Ezunit: A
framework for associating failed unit tests with potential
programming errors. In Proc. of the International Conference
on Agile Processes in Software Engineering and Extreme
Programming (XP’07). Springer, 2007.

[6] DBX. Debugging tools – DBX, SunOS 4.1.1 ed., 1990. SUN
MICROSYSTEMS, INC.

[7] D. Geer. Eclipse becomes the dominant Java IDE. Computer,
2005.

[8] B. Hailpern and P. Santhanam. Software debugging, testing,
and verification. IBM Systems Journal, 2002.

[9] M. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical
investigation of program spectra. ACM SIGPLAN Notices,
1998.

[10] T. Janssen, R. Abreu, and A. J. C. van Gemund. Zoltar: A
toolset for automatic fault localization. In Proc. of the Int’l
Conference on Automated Software Engineering (ASE’09) -
Tools Track. IEEE Computer Society, 2009.

[11] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization of
test information to assist fault localization. In M. Young and
J. Magee, editors, Proc. of the International Conference on
Software Engineering (ICSE’02). ACM Press, 2002.

[12] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery Oriented Computing (ROC): Motivation,
definition, techniques, and case studies. Technical Report
UCB/CSD-02-1175, University of California at Berkeley, 2002.

[13] A. Riboira. GZoltar: A graphical debugger interface. Master’s
thesis, University of Porto, 2011.

[14] RTI. Planning report 02-3: The economic impacts of
inadequate infrastructure for software testing. Planning report,
National Institute of Standards and Technology, 2002.

[15] R. Stallman. Debugging with GDB – The GNU source level
debugger, 1994. Free Software Foundation.

[16] J. Stasko, R. Catrambone, M. Guzdial, and K. McDonald. An
evaluation of space-filling information visualizations for
depicting hierarchical structures. International Journal of
Human-Computer Studies, 2000.

[17] Z. Xu, Y. Yan, and J. Chen. Opengl programming in java.
Computing in Science Engineering, 2005.

[18] A. Zeller and D. Lütkehaus. DDD – A free graphical front-end
for UNIX debuggers. ACM SIGPLAN Notices, 1996.

