
GZoltar: An Eclipse Plug-In for Testing and Debugging

José Campos André Riboira Alexandre Perez Rui Abreu

Department of Informatics Engineering
Faculty of Engineering, University of Porto

Portugal
{jose.carlos.campos, andre.riboira, alexandre.perez}@fe.up.pt; rui@computer.org

ABSTRACT
Testing and debugging is the most expensive, error-prone
phase in the software development life cycle. Automated
testing and diagnosis of software faults can drastically
improve the efficiency of this phase, this way improving
the overall quality of the software. In this paper we
present a toolset for automatic testing and fault localiza-
tion, dubbed GZoltar, which hosts techniques for (regres-
sion) test suite minimization and automatic fault diagno-
sis (namely, spectrum-based fault localization). The toolset
provides the infrastructure to automatically instrument the
source code of software programs to produce runtime data.
Subsequently the data was analyzed to both minimize the
test suite and return a ranked list of diagnosis candidates.
The toolset is a plug-and-play plug-in for the Eclipse IDE
to ease world-wide adoption.

Categories and Subject Descriptors
D.2.5 [Software engineering]: Testing and Debugging

General Terms
Reliability, Experimentation

Keywords
Eclipse plug-in, Automatic Testing, Automatic Debugging,
GZoltar, RZoltar

1. TESTING & DEBUGGING
Testing and Debugging is an important, yet the most ex-

pensive and tedious phase of the software development life-
cycle. Although there are already off-the-shelf frameworks
to ease these tasks, they still do not offer enough capabili-
ties to fully automate this phase. Well known (unit) testing
frameworks include JUnit, TestNG, and JTest, which au-
tomate the test execution but do not offer capabilities for,
e.g., test suite minimization based on some criteria (such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$15.00.

coverage). Several debugging tools exist which are based on
stepping through the execution of the program (e.g., GDB
and DDD). These traditional, manual fault localization ap-
proaches have a number of important limitations. The place-
ment of print statements as well as the inspection of their
output are unstructured and ad-hoc, and are typically based
on the developer’s intuition. In addition, developers tend to
use only test cases that reveal the failure, and therefore do
not use valuable information from (the typically available)
passing test cases.

Aimed at drastic cost reduction, much research has been
performed in developing automatic testing and fault local-
ization techniques and tools. As far as testing is concerned,
several techniques have been proposed to minimize and pri-
oritize test cases in order to reduce execution time and fail-
ure detection, while maintaining similar code coverage [15].
This paper presents a toolset, coined GZoltar, that pro-
vides a technique for test suite reduction and prioritization.
The technique minimizes the original test suite using a novel
constraint-based approach [4], while still guaranteeing the
same code coverage. Furthermore, the technique allows the
user to prioritize the minimized test suites by cardinality
and execution time of the computed test suites.

As for debugging, one of the predominant techniques are
those based on a black box statistics-based method [1] which
takes a program and available test cases and returns the
most probable location (component) that explains the ob-
served failed test cases.

The GZoltar toolset implements a technique called
spectrum-based fault localization (SFL [1]; in particular, the
tool provides the Ochiai [1] incarnation of SFL, which is
amongst the best for fault localization). SFL is based on
instrumenting a program to keep track of executed parts.
The instrumentation data is then analyzed to yield a list of
source code locations ordered by the likelihood of it contain-
ing the fault. Furthermore, the toolset enables a program
to be trained with expected behavior and to automatically
detect an error if unexpected behavior is observed. The fact
that no knowledge is needed of the program to acquire pos-
sible fault locations makes this set of tools a useful extension
to currently applied methods of testing and debugging.

The GZoltar toolset, being developed at the University
of Porto, aims at providing state-of-the-art techniques for
(regression) test suite minimization and fault localization.

To obtain more information about the toolset, visit our
Web site:

http://www.gzoltar.com

http://www.gzoltar.com


2. GZOLTAR TOOLSET
GZoltar is an Eclipse plug-in which produces accu-

rate fault localization information using state-of-the-art
spectrum-based fault localization algorithms, and provide
the last studies in the field of regression testing [4]. It also
creates intuitive and interactive diagnostic reports’ visual-
izations, such as Treemap and Sunburst (see Fig. 3).

The integration with Eclipse (one of the most popular
IDEs) is extremely useful. GZoltar uses Eclipse’s standard
features, such as detection of open projects in the workspace
and their classes, to build the structure of System Under
Test (SUT) to be used by the visualization view. Besides,
GZoltar integrates well code editor as well as the standard
Eclipse warnings generation with the provided visual diag-
nostic reports to facilitate the debugging process.

GZoltar aids developers finding faults faster, thus spend-
ing less time and resources in testing and debugging. This
in turn leads to a higher software reliability level and/or to a
decrease of its test period, thus reducing costs significantly.

2.1 GZoltar Architecture
The GZoltar is mainly written in Java and also uses

third-party open source programs. The Eclipse’s Workspace
component is used to gather information it needs, such as
open projects, their classes, and JUnit tests. ASM [3], a
Java bytecode engineering library, is used to instrument the
SUT in order to obtain coverage traces when executing the
unit tests with JUnit. The Eclipse’s Workbench component
is used for generating the Eclipse User Interface (UI) tasks.
This component has Standard Widget Toolkit (SWT) to
create the GZoltar view, and provides a bridge to Abstract
Windows Toolkit (required by the Java OpenGL (JOGL),
the component that provides OpenGL bindings to Java).
JOGL generates the OpenGL-based visualizations displayed
on the GZoltar view.

Integrated in the GZoltar plug-in, but written in C is the
MINION constraint solver1. Finally, the TRIE [7] structure
has a interface written in Java and implemented in C for
efficiency. For a schematic view of these technological layers
and their interactions, see Fig. 1.

MINION

TRIE JNI

TRIE

ASM

JUnit

Workspace

JOGL

AWT

SWT

Workbench

Operating System

Figure 1: GZoltar Layers. Integration between
GZoltar and other technologies.

2.2 GZoltar Flow
The GZoltar processing flow can be divided into eight

main stages (see Fig. 2).

Initial Eclipse Integration: Eclipse makes it possible to
automatically detect all open projects in the IDE. Once the
1MINION Homepage, http://minion.sourceforge.net/,
2012.

Detect all Open Projects

Detect Test Classes

Execute Test and obtain its Result

Instrument all Classes

Obtain Coverage Result

Create Coverage Matrix Line

Create Constraints

Execute the MINION Constraint Solver

Obtain all solutions

Filter solutions

fo
r 

ea
ch

 t
es

t 
cl

a
ss

fo
r 

ea
ch

 o
p

en
 p

ro
je

ct

fo
r 

ea
ch

 li
ne

Show solutions and Code Editor Integration

Execute the Ochiai Algorithm

Obtain Relations between Lines of Code

Create Hierarchical Structure Tree

OpenGL View and Navigation

Warning Generation and Code Editor Integration

Figure 2: Information flow.

set of the open projects is known, GZoltar search indexes
all their classes and JUnit test classes (those who have test
methods written in JUnit syntax, to be executed later). To
avoid differences between source files and compiled classes,
at this stage, GZoltar forces Eclipse to build the open
projects, to guarantee that it is working with the latest
version of the code.

JUnit and ASM: For each project there is a list of all
test classes. For each class in the project all code is instru-
mented to allow the code coverage process. That process
aims at detecting if a given line of code was executed or not.
GZoltar uses ASM to instrument all open projects, thus
being capable of debugging projects that call methods from
other projects. Subsequently, test classes, implemented in
the JUnit syntax, are executed automatically.

The information whether a test case has passed or failed is
also stored to be used later by both the RZoltar (namely,
to display if test fails) and GZoltar (namely, to compute
the diagnostic report) views. The results are saved into a
coverage matrix [4], a N ×M binary matrix A, where N is
the execution of a test case, M corresponds to different com-
ponents of a software program, and aij is the coverage for
component j when test i is executed. Once the code cover-
age matrix is gathered, RZoltar analyzes them to minimize
the suite.

http://minion.sourceforge.net/


Gathering code coverage information of the SUT for each
test case consists of three steps: (1) the code is instrumented
to register what statements where touched by an execution,
(2) the test case is executed, and (3) a coverage trace of
what statements were executed is computed, and appended
to the coverage matrix.

In summary, at this stage, all code from open projects
are instrumented and built, test classes are executed, and
code coverage matrix (plus any other relevant information)
is stored.

MINION: After collecting the coverage of the SUT,
into the coverage matrix explained before, the coverage
information is passed to the constraint solver and it returns
at least one minimum set that cover the entire software
program such as original set.

Filtering out Solutions: The results provided by the
constraint solver are then filtered out using a TRIE
data structure. Essentially, this stage is to discard non-
minimal test suites from the collection presented to the user.

Show Solutions: At this stage the user can select a
reduced subset to re-execute, or sort all subsets by: their
cardinality or execution time of each subset.

Run Ochiai: At this stage, GZoltar executes the SFL
algorithm Ochiai, known to be amongst the best performing
techniques for fault localization [1]. Based on all JUnit test
results, the Ochiai similarity coefficient is calculated for
every element of the system.

Graphical Visualization: To perform powerful and
efficient visualizations of SUT, GZoltar uses OpenGL
technology in order to take advantage of the Graphics
Processing Unit (GPU).

Warning Generation and Final Eclipse Integration:
The GZoltar plug-in also generates warnings that are
integrate with the code editor, marking the lines that have
a high probability of being faulty.

After all these stages, the user can inspect the failed unit
tests and faulty lines (if they exist). This is a recursive
process, so until all faults are not fixed, user can select a
minimum set to re-execute (testing and saving time at the
same time), fix and re-execute again.

2.3 Eclipse Views
By default, GZoltar offers two Eclipse views integrated

into the IDE: GZoltar (Fig. 3) and RZoltar (Fig. 4).
While analyzing the SUT, the user can click on the visual

representation of a line of code on the GZoltar view, and
jump directly to that line in the Eclipse’s code editor. An
Eclipse code editor is opened with the text cursor placed
on the line selected in the GZoltar view. Furthermore,
GZoltar also generates a list of markers on the code edi-
tor’s vertical ruler, which indicates the fault probability of
the respective line when hovering the mouse over the marker.
These markers can be of three different types: (1) red for
the top third statements most likely to contain a fault, (2)
yellow for the middle third statements, and (3) green for the
bottom third statements. Every marker also has an embed-

ded ColorADD2 symbol, in order to help colorblind people
distinguish between markers. These annotation markers are
also displayed on the Eclipse “Problems” view.

GZoltar view also provides two visualizations [14]
Treemap and Sunburst, as shown in Fig. 3. With this seam-
less integration, the user can easily analyze the SUT struc-
ture and localize the root cause of observed failures. Thus,
GZoltar provides an easy way to access directly to the
source code in order to fix faults.

Figure 4: RZoltar interface [4].

The RZoltar view (Fig. 4) is divided in two layers. On
the left layer, the user can access the list of minimum set
coverage (including the set with all test cases, just in case
the user decides to re-execute the original test suite) and
check the result of test cases (pass, fail, or error) by the
color of icon. If a test fails or returns an error, the error
message is displayed in “Trace” window. In all layers, the
user can always double-click on a test case and jump to
the test case file, or at failure trace, double-click goes to line
(presents in that layer). This is similar to the functionalities
offered by JUnit. The RZoltar view offers two criteria
to prioritize test suites: Cardinality of Set and Runtime.
The latter prioritization orders the minimum sets found (test
suites of reduced size) using the take it takes to re-execute
the suite, whereas the former orders the sets by the number
of tests cases (set cardinality).

All in all, GZoltar provides an excellent ecosystem for
regression testing and automatic debugging. This toolset
is also straightforward to understand because we use famil-
iar interface features (e.g., icons similar to the ones used in
JUnit).

3. RELATED WORK
Nowadays most of the IDEs in market only offer a limited

and manual debugging tool, such as breakpoints, conditional
breakpoints, or the possibility to execute the software in a
step-by-step. To the best of our knowledge, the most well
known automatic debugging tools is Tarantula [12]. This in-
dependent tool is based on the the code coverage of multiple
test executions of a given system. Although, Tarantula has
not integration with any IDE, and do not support unit tests.
Zoltar [11] is another available automatic debugging tool. It
uses similarity coefficients to predict the failure probability
of each line of code. Currently Zoltar runs only on Linux
systems and works only with projects written in C language.
Other relevant tools for automatic debugging are: Vida [8]
an Eclipse plug-in based in Tarantula approach; EzUnit4 [2]

2ColorADD color identification system, http://coloradd.
net/, 2012.

http://coloradd.net/
http://coloradd.net/


Figure 3: GZoltar’s visualizations: Treemap and Sunburst [14].

is also an Eclipse plug-in that uses statistical analysis to
determine the failure probability of every tested method.

Regression testing has been the field of several research
studies in last years. Similar to RZoltar, the following tools
are the best known tools for regression testing: MINTS [10]
which uses an Integer Linear Programming (ILP) solver with
multi-criteria test minimization; TestTube [5] partitions the
SUT in several program entities, and follow the execution
of test cases to analyze the relation between tests and pro-
gram entities. Other techniques for regression testing in-
clude Greedy heuristic [6] and Program Slicing [9].

4. CONCLUSIONS
Testing and debugging is tedious and cumbersome phase

in the software development life-cycle. Aimed at aiding the
developer to test the software application and, if needed,
pinpoint the source of observed failures, this paper describes
GZoltar, an Eclipse plug-in which has a GZoltar view to
deal with tasks about debugging, and RZoltar view for
regression testing purpose. The toolset as well as a tutorial
can be obtained from http://www.gzoltar.com.

Future work include the following. We plan to provide
more techniques for minimizing test suites (e.g., greedy,
MINTS) and add more visualizations of the diagnostic re-
ports. Furthermore, there are plans to add the capability
of dynamically instrumenting the source code, this way re-
ducing the overhead imposed to collect information. Finally,
we intend to combine other approaches, such as model-based
diagnosis, to refine the rankings yielded by spectrum-based
fault localization [13].

5. ACKNOWLEDGMENTS
This work is funded by the ERDF through the Programme

COMPETE and by the Portuguese Government through
FCT - Foundation for Science and Technology, project ref-
erence PTDC/EIA-CCO/116796/2010.

6. REFERENCES
[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van

Gemund. A practical evaluation of spectrum-based fault
localization. J. Syst. Softw., 82(11):1780–1792, Nov. 2009.

[2] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann.
EZUNIT: A Framework for Associating Failed Unit Tests
with Potential Programming Errors. In Proc. of the XP’ 07.

[3] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: a Code
Manipulation Tool to Implement Adaptable Systems. In
Proc. of the ASF Journées Composants, 2002.

[4] J. Campos. Regression testing with GZoltar: Techniques
for test suite minimization, selection, and prioritization.
Master’s thesis, University of Porto, Portugal, 2012.

[5] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. TestTube: a
system for selective regression testing. In Proc. of the ICSE
’94, pages 211–220, Los Alamitos, CA, USA.

[6] V. Chvatal. A Greedy Heuristic for the Set-Covering
Problem. Mathematics of Operations Research, 1979.

[7] E. Fredkin. Trie memory. Commun. ACM, 3:490–499, 1960.
[8] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. VIDA:

Visual interactive debugging. In Proc. of the ICSE ’09,
pages 583–586, Washington, DC, USA.

[9] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Trans. Softw.
Eng. Methodol., 2:270–285, July 1993.

[10] H.-Y. Hsu and A. Orso. MINTS: A General Framework and
Tool for Supporting Test-suite Minimization. In Proc. of
the ICSE ’09, pages 419–429, Washington, DC, USA.

[11] T. Janssen, R. Abreu, and A. J. C. v. Gemund. Zoltar: A
Toolset for Automatic Fault Localization. In Proc. of the
ASE ’09, pages 662–664, Washington, DC, USA.

[12] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization for
Fault Localization. In Proc. of the WSV ’01, Canada.

[13] W. Mayer, R. Abreu, M. Stumptner, and A. J. van
Gemund. Prioritizing Model-Based Debugging Diagnostic
Reports. In Proc. of the DX’ 08, pages 127–134.

[14] A. Riboira. GZoltar: A Graphical Debugger Interface.
Master’s thesis, University of Porto, Portugal, 2011.

[15] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test. Verif.
Reliab., 22(2):67–120, Mar. 2012.

http://www.gzoltar.com

	Testing & Debugging
	GZoltar Toolset
	GZoltar Architecture
	GZoltar Flow
	Eclipse Views

	Related Work
	Conclusions
	Acknowledgments
	References

